
Interaction laws of monads and comonads

Tarmo Uustalu
joint work with Shin-ya Katsumata and Exequiel Rivas

OWLS seminar, 29 July 2020

Effects happen in interaction

To run,

an effectful program behaving as
a computation

needs to interact with

a environment
that an effect-providing machine behaves as

E.g.,

a nondeterministic program needs a machine making
choices;
a stateful program needs a machine coherently
responding to fetch and store commands.

This talk

We propose and study

functor-functor interaction laws,
monad-comonad interaction laws.

as mathematical concepts for describing interaction
protocols in this scenario.

Functor-functor interaction laws are for unrestricted
notions of computation

Monad-comonad interaction laws are for notions of
computation that are closed under

“doing nothing” (just returning),
sequential composition.

Outline

Functor-functor and monad-comonad interaction laws

Some examples and degeneracy theorems

Dual—greatest interacting functor or monad;
Sweedler dual—greatest interacting comonad

Some examples

Residual interaction laws (to counteract degeneracies, but
not only)

Object-object and monoid-comonoid interaction laws
in duoidal categories

Functor-functor interaction laws

Let C be a Cartesian category
(symmetric monoidal will work too).

Think C = Set.

A functor-functor interaction law is given
by two functors F ,G : C → C and a family of maps

φX ,Y : FX × GY → X × Y

natural in X ,Y .

Legend:
X – values, FX – computations
Y – states, GY – environments (incl an initial state)

Examples of functor-functor interaction laws

F X = O×︸︷︷︸
outp

((I⇒︸︷︷︸
inp

X) ×︸︷︷︸
ext ch

(O ′×︸︷︷︸
outp

X)),

G Y = O⇒︸︷︷︸
inp

((I×︸︷︷︸
outp

Y) +︸︷︷︸
int ch

(O ′⇒︸︷︷︸
inp

Y))

for some sets O, I , O ′

φ ((o, (f , (o ′, x))), g) =

case g o of

{
inl (i , y) 7→ (f i , y)
inr h 7→ (x , h o ′)

We can vary φ, e.g., change o ′ to o ∗ o ′ in the 2nd case
for some ∗ : O × O ′ → O ′

We can also vary G , e.g., take
G ′ Y = N⇒ (I × Y)

φ′ (o, (f ,)), g) = let (i , y) = g 42 in (f i , y)

(This is like session types, no?)

Monad-comonad interaction laws

A monad-comonad interaction law is given
by a monad (T , η, µ) and a comonad (D, ε, δ)
and a family of maps

ψX ,Y : TX × DY → X × Y

natural in X , Y such that

X × Y X × Y

X × DY

id×εY 66

ηX×id ((
TX × DY

ψX,Y // X × Y

TTX × DDY
ψTX,DY// TX × DY

ψX,Y // X × Y

TTX × DY

id×δY 44

µX×id **
TX × DY

ψX,Y // X × Y

Legend:
X – values, TX – computations
Y – states, DY – environments (incl an initial state)

Some examples of mnd-cmnd int laws

TX = S ⇒ X (the reader monad),
DY = S0 × Y
for some S0, S and c : S0 → S

ψ (f , (s0, y)) = (f (c s0), y)

Legend:
X – values, S – “views” of store,
Y – (control) states, S0 – states of store

TX = S ⇒ (S × X) (the state monad),
DY = S0 × (S0 ⇒ Y)
for some S0, S , c : S0 → S and d : S0 × S → S0

forming a (very well-behaved) lens

ψ (f , (s0, g)) = let (s ′, x) = f (c s0) in (x , g (d (s0, s
′)))

TX = µZ .X + Z × Z , DY = νW .Y × (W + W)

Monad-comonad interaction laws are monoids

A functor-functor interaction law map between (F ,G , φ),
(F ′,G ′, φ′) is given by nat. transfs. f : F → F ′,
g : G ′ → G such that

FX × GY
φX,Y // X × Y

FX × G ′Y

id×gY 33

fX×id
++
F ′X × G ′Y

φ′X,Y // X × Y

Functor-functor interaction laws form a category with a
composition-based monoidal structure.

These categories are isomorphic:

monad-comonad interaction laws;
monoid objects of the category of functor-functor
interaction laws.

Some degeneracy thms for func-func int laws

Assume C is extensive (“has well-behaved coproducts”).

If F has a nullary operation, i.e., a family of maps

cx : 1→ FX

natural in X (eg, F = Maybe)
or a binary commutative operation, i.e., a family of maps

cx : X × X → FX

natural in X such that

X × X

sym
��

cx
**
FX

X × X cx

44

(eg, F =M+
fin) and F interacts with G , then GY ∼= 0.

A degeneracy thm for mnd-cmnd int laws

If T has a binary associative operation, ie a family of
maps cx : X × X → TX natural in X such that

(X × X)× X

ass

��

`X

--
TX

X × (X × X)
rX

11

where

`X = (X × X)× X
cX×ηX // TX × TX

cTX // TTX
µX // TX

rX = X × (X × X)
ηX×cX // TX × TX

cTX // TTX
µX // TX

(eg, T = List+), then any int law ψ of T and D obeys

(X × X)× X × DY

fst×id×id
��

`X×id // TX × DY
ψX,Y

((
X × X × DY

cX×id // TX × DY

ψX,Y // X × Y

X × (X × X)× DY

id×snd×id
OO

rX×id // TX × DY
ψX,Y

66

Dual of a functor

Assume now C is Cartesian closed.

For a functor G : C → C, its dual is the functor
G ◦ : C → C is

G ◦X =
∫

Y
GY ⇒ (X × Y)

(if this end exists).

(−)◦ is a functor [C, C]op → [C, C]
(if all functors C → C are dualizable;
if not, restrict to some full subcategory of [C, C] closed
under dualization).

Dual of a functor ctd

The dual G ◦ is the “greatest” functor interacting with G .

These categories are isomorphic:

functor-functor interaction laws;
pairs of functors F , G with nat. transfs. F → G ◦;
pairs of functors F , G with nat. transfs. G → F ◦.

FX × GY → X × Y

FX →
∫
YGY ⇒ (X × Y)︸ ︷︷ ︸

G◦X

FX × GY //

��

X × Y

G ◦X × GY

77 F //

��

G ◦

G ◦

Some examples of dual

Let GY = 1. Then G ◦X ∼= 0.

Let GY = Σa : A.G ′aY , then G ◦X ∼= Πa : A.(G ′a)◦X .

In particular,
for GY = 0, we have G ◦X ∼= 1
and, for GY = G0Y +G1Y , we have G ◦X ∼= G ◦0X ×G ◦1X .

Let GY = A⇒ Y . We have G ◦X ∼= A× X .

But: Let GY = Πa : A.G ′a Y . We only have
Σa : A.(G ′a)◦X → G ◦X .

Id◦ ∼= Id.

But we only have G ◦0 · G ◦1 → (G0 · G1)◦.

For any G with a nullary or a binary commutative
operation, we have G ◦X ∼= 0.

Dual of a comonad / Sweedler dual a monad

The dual D◦ of a comonad D is a monad.

This is because (−)◦ : [C, C]op → [C, C] is lax monoidal,
so send monoids to monoids.

But (−)◦ is not oplax monoidal, does not send comonoids
to comonoids.

So the dual T ◦ of a monad T is generally not a comonad.

However we can talk about the Sweedler dual T • of T .

Informally, it is defined as the greatest functor D that is
smaller than the functor T ◦ and carries a comonad
structure η•, µ• agreeing with η◦, µ◦.

Dual of a comonad / Sweedler dual of a monad ctd

Formally, the Sweedler dual of the monad T is the
comonad (T •, η•, µ•) together with a natural
transformation ι : T • → T ◦ such that

Id
e ,,

Id◦

e−1

kk

T•
η•
OO

ι // T◦
η◦
OO T• · T•

ι·ι // T◦ · T◦
mT,T ..

(T · T)◦

??

mm

T•

µ•
OO

ι // T◦
µ◦
OO

and such that, for any comonad (D, ε, δ) together with a
natural transformation ψ satisfying the same conditions,
there is a unique comonad map h : D → T • satisfying

Id
e // Id◦

Id

T•

η•

OO

ι // T◦

η◦

OO

D

ε

OO

h 66
ψ

33

T• · T•
ι·ι // T◦ · T◦

mT,T // (T · T)◦

D · D

h·h 55
ψ·ψ

22

T•

µ•

OO

ι // T◦

µ◦

OO

D

δ

OO

h 44
ψ

11

Some examples of dual and Sweedler dual

Let TX = List+X ∼= Σn : N. ([0..n]⇒ X)
(the nonempty list monad) .

We have T ◦Y ∼= Πn : N. ([0..n]× Y)
but T •Y ∼= Y × (Y + Y).

Let TX = S ⇒ (S × X) ∼= (S ⇒ S)× (S ⇒ X)
(the state monad).

We have T ◦Y = (S ⇒ S)⇒ (S × Y)
but T •Y = S × (S ⇒ Y).

Residual interaction laws

Given a monad (R , ηR , µR) on C.

Eg, R = Maybe, M+ or M.

A residual functor-functor interaction law is given
by two functors F ,G : C → C and a family of maps

φX ,Y : FX × GY → R(X × Y)

natural in X , Y .

Residual interaction laws ctd

A residual monad-comonad interaction law is given
by a monad (T , η, µ), a comonad (D, ε, δ)
and a family of maps

ψX ,Y : TX × DY → R(X × Y)

natural in X , Y such that

X × Y X × Y

ηRX×Y

��

X × DY

id×εY 66

ηX×id ((
TX × DY

ψX,Y// R(X × Y)

TTX × DDY
ψTX,DY// R(TX × DY)

RψX,Y// RR(X × Y)

µR
X×Y

��

TTX × DY

id×δY 55

µX×id))
TX × DY

ψX,Y // R(X × Y)

R-residual functor-functor interaction laws form a
monoidal category with R-residual monad-comonad
interaction laws as monoids.

Interaction laws and Chu spaces

The Day convolution of F , G is

(F ? G)Z =
∫ X ,YC(X × Y ,Z) • (FX × GY)

(if this coend exists).

These categories are isomorphic:

functor-functor interaction laws;
Chu spaces on ([C, C], Id, ?) with vertex Id, ie, triples of
two functors F , G with a nat transf F ? G → Id.

(if ? is defined for all functors).

FX × GY → X × Y

C(X × Y ,Z)→ C(FX × GY ,Z)∫ X ,Y C(X × Y ,Z) • (FX × GY)︸ ︷︷ ︸
(F?G)Z

→ Z

Interaction laws and Chu spaces ctd

We do not immediately get another chacterization of the
category of monad-comonad interaction laws.

That’s because the standard monoidal structure on the
above category of Chu spaces is constructed from the
Day convolution.

But we want a monoidal structure from composition.

Interaction laws and Hasegawa’s glueing

Given a duoidal category (F , I , ·, J , ?) closed wrt. (J , ?).

Given also a monoid (R , ηR , µR) in (F , I , ·).

Define (−)◦ : Fop → F by G ◦ = G −? R .

(−)◦ is lax monoidal.

By an argument by Hasegawa, the comma category
F ↓ (−)◦ has a (I , ·) based monoidal structure.

Now take F = [C, C] with (I , ·) its composition monoidal
and (J , ?,−?) its Day convolution SMC structure
(if ? and −? are defined for all functors).

Then these categories are isomorphic:

R-residual monad-comonad interaction laws;
monoids in the monoidal category [C, C] ↓ (−)◦.

Relation to effect handling (jww Niels Voorneveld)

An R-residual mnd-cmnd int law of T , D explains how
some of the effects of a computation are dealt with by
the environment, some are left alone or transformed.

Given

an int law ψY ,Z : T (Y ⇒ Z)→ DY ⇒ RZ ,
a coalgebra (B, β : B → DB) of D
(a coeffect producer) and
an algebra (C , γ : RC → C) of R
(a residual effect handler)

we get an algebra
(B ⇒ C , (β ⇒ γ) ◦ ψB,C : T (B ⇒ C)→ B ⇒ C)
of T (an effect handler).

In fact, mnd-mnd interaction laws are in a bijection with
carrier-exponentiating functors from
(Coalg(D))op × Alg(R)→ Alg(T).

Takeaway

A single framework for talking about computations,
environments and interaction

Lots of mathematical structure around, a lot can be
stated very generally

What are some recipes for calculating the Sweedler dual?

Sweedler dual in the residual case

Relationship of interaction laws to session types

