Interaction laws of monads and comonads

Tarmo Uustalu
joint work with Shin-ya Katsumata and Exequiel Rivas

OWLS seminar, 29 July 2020

Effects happen in interaction

@ To run,

an effectful program behaving as
a computation

needs to interact with

a environment
that an effect-providing machine behaves as

o Eg,

e a nondeterministic program needs a machine making
choices;

e a stateful program needs a machine coherently
responding to fetch and store commands.

This talk

@ We propose and study

e functor-functor interaction laws,
e monad-comonad interaction laws.

as mathematical concepts for describing interaction
protocols in this scenario.

@ Functor-functor interaction laws are for unrestricted
notions of computation

@ Monad-comonad interaction laws are for notions of
computation that are closed under

e “doing nothing” (just returning),
e sequential composition.

Outline

Functor-functor and monad-comonad interaction laws

Some examples and degeneracy theorems

Dual—greatest interacting functor or monad;
Sweedler dual—greatest interacting comonad

Some examples

Residual interaction laws (to counteract degeneracies, but
not only)

Object-object and monoid-comonoid interaction laws
in duoidal categories

Functor-functor interaction laws

@ Let C be a Cartesian category
(symmetric monoidal will work too).

@ Think C = Set.

@ A functor-functor interaction law is given
by two functors F, G : C — C and a family of maps

dxy FX X GY 5 X x Y

natural in X,Y.

o Legend:
X — values, FX — computations
Y — states, GY — environments (incl an initial state)

Examples of functor-functor interaction laws

o FX=0x (U=X) 2L (@x X))

outp inp ext ch outp
— /
GY =02 (UL Y) (@2 Y)
inp outp int ch Inp

for some sets O, [, O’
o ¢((o,(f,(0,x))), &) =
inl(i,y) — (fi,y)

case g o of inrh = (x,ho)

e We can vary ¢, e.g., change o' to o x 0’ in the 2nd case
for some x: O x O' — O’

@ We can also vary G, e.g., take
G'Y=N=(IxY)
° ¢'(o,(f,-)),g) =let (i,y) =g42in (fiy)

@ (This is like session types, no?)

Monad-comonad interaction laws

@ A monad-comonad interaction law is given
by a monad (7,7, 1) and a comonad (D, ¢,)
and a family of maps

Yxy: IXXDY - XxY

natural in X, Y such that

PYTX,DY VX, ¥
" XXY=—7—=XXxY . TTX x DDY — TX x DY — X x Y
|y idxdy
X x DY TTX x DY
nx Xid Px,y ;A)(XX Px,y
TXx DY — X xY TX x DY XxY
o Legend:

X — values, TX — computations
Y — states, DY — environments (incl an initial state)

Some examples of mnd-cmnd int laws

@ TX =S = X (the reader monad),
DY =5, x Y
for some So, Sand c: 5 — S

° ¢ (f,(s0,5)) = (f(c %))
@ Legend:
X — values, S — “views" of store,
Y — (control) states, Sy — states of store

@ TX =5 = (S x X) (the state monad),
DYZSOX(50:> Y)
for some Sp, S, c:So—=>Sandd: 5 xS — 5
forming a (very well-behaved) lens

@ Y (f,(s0,8)) =let (s',x) ="f(cs)in (x,g(d(s0,5)))

o TX=pZ. X+ZxZ DY =vW.Y x (W + W)

Monad-comonad interaction laws are monoids

@ A functor-functor interaction law map between (F, G, ¢),
(F', G',¢') is given by nat. transfs. f : F — F/,
g : G' — G such that

bx,y
idxgy _ FX X GY —> X x Y
/’

FX x G'Y

X FIXxGY—>=XxY

@ Functor-functor interaction laws form a category with a
composition-based monoidal structure.

@ These categories are isomorphic:
e monad-comonad interaction laws;
e monoid objects of the category of functor-functor
interaction laws.

Some degeneracy thms for func-func int laws

@ Assume C is extensive (“has well-behaved coproducts”).
e If F has a nullary operation, i.e., a family of maps

1 — FX

natural in X (eg, F = Maybe)
or a binary commutative operation, i.e., a family of maps

G X x X = FX
natural in X such that

X xX ¢

X x X =

(eg, F = M) and F interacts with G, then GY 0.

A degeneracy thm for mnd-cmnd int laws

e If T has a binary associative operation, ie a family of
maps ¢ : X x X — TX natural in X such that

(X x X)x X Lx
assl > TX
X

X X (X x X)
where
X XX TX KX
Lx = (X x X) x X TX x TX TTX TX
X xex TX KX
rx = X x (X x X) TX X TX TTX TX

(eg, T = List"), then any int law ¢ of T and D obeys

£x xid
(X X X) X X x DY —> TX x DY

o X,y
fst X id X id
cx Xid VX,

XXXXDY — > TXxDY — > XXY

id><5nd><id1‘ /
ry Xid wX,Y

X X (X x X) x DY — > TX x DY

Dual of a functor

@ Assume now C is Cartesian closed.

@ For a functor G : C — C, its dual is the functor
G°:C—Cis

G°X = [,GY = (X x Y)
(if this end exists).

e (—)°is a functor [C,C]® — [C,(]
(if all functors C — C are dualizable;
if not, restrict to some full subcategory of [C, (] closed
under dualization).

Dual of a functor ctd
@ The dual G° is the “greatest” functor interacting with G.

@ These categories are isomorphic:

o functor-functor interaction laws;
e pairs of functors F, G with nat. transfs. F — G°;
e pairs of functors F, G with nat. transfs. G — F°.

FX X GY 5 X x Y
FX = [,GY = (X x Y)

G°X

FX x GY —= X XY F——G°

Y4

G°X x GY Go

Some examples of dual

@ Let GY =1. Then G°X =0.
o Let GY =Xa: AG'aY, then G°X =Tla: A(G'a)°X.

@ In particular,
for GY =0, we have G°X =1
and, for GY = GoY + G1 Y, we have G°X = G X x Gy X.

o Let GY =A= Y. We have G°X = A x X.

e But: Let GY =Tla: A.G'aY. We only have
Ya:A(Ga)X — G°X.

o Id° = Id.

@ But we only have G§ - GY — (Gp - G1)°.

@ For any G with a nullary or a binary commutative
operation, we have G°X = 0.

Dual of a comonad / Sweedler dual a monad

@ The dual D° of a comonad D is a monad.

This is because (—)° : [C,C]°® — [C,C] is lax monoidal,
so send monoids to monoids.

@ But (—)° is not oplax monoidal, does not send comonoids
to comonoids.

@ So the dual T° of a monad T is generally not a comonad.

@ However we can talk about the Sweedler dual T*® of T.

@ Informally, it is defined as the greatest functor D that is
smaller than the functor T° and carries a comonad
structure n°®, u® agreeing with n°, u°.

Dual of a comonad / Sweedler dual of a monad ctd

e Formally, the Sweedler dual of the monad T is the
comonad (T°*,n°®, u*) together with a natural
transformation ¢ : T®* — T° such that

e mr, T

A= 1d° T* T —>To. T __ > (T-T)
no/T e~ 1 Tno ”‘.T 7”7 TMO
T® % To T L To

and such that, for any comonad (D, ¢, §) together with a
natural transformation 1 satisfying the same conditions,
there is a unique comonad map h: D — T* satisfying

. m
Te.Te s o 7o L (7.0

e
Id ——Id° bh
b

Some examples of dual and Sweedler dual

o Let TX = List" X @ ¥n: N.([0..n] = X)
(the nonempty list monad) .

@ We have T°Y = n: N.([0..n] x Y)
but T*Y =Y x(Y+Y).

e let TX=S=(SxX)2(5S5=35)x (5= X)
(the state monad).

@ We have T°Y =(§=5)= (SxY)
but T°Y = S x (S = Y).

Residual interaction laws

e Given a monad (R, 7R, uf) on C.
e Eg, R = Maybe, M* or M.

@ A residual functor-functor interaction law is given
by two functors F, G : C — C and a family of maps

dx.y i FX x GY = R(X x Y)

natural in X, Y.

Residual interaction laws ctd

@ A residual monad-comonad interaction law is given
by a monad (T, 7, 1), a comonad (D, ¢,0)
and a family of maps

QXJX,yZ X x DY — R(XX Y)

natural in X, Y such that

VTX,DY Ryx y
) XXY——XxY) TTX x DDY = R(TX x DY) = RR(X X Y)
X x DY "xxv| TTX x DY 1R xxy
nm X,y ;m VX, vy
TX x DY = R(X X Y) TX x DY R(X xY)

@ R-residual functor-functor interaction laws form a
monoidal category with R-residual monad-comonad
interaction laws as monoids.

Interaction laws and Chu spaces

@ The Day convolution of F, G is
(FxG)Z = [*YC(X x Y,Z) e (FX x GY)
(if this coend exists).

@ These categories are isomorphic:

o functor-functor interaction laws;
o Chu spaces on ([C,C], Id,) with vertex Id, ie, triples of
two functors F, G with a nat transf F x G — Id.

(if x is defined for all functors).

FX x GY 5 X x Y
C(X x Y,Z) = C(FX x GY, 2)

[YC(X x Y,Z) o (FX x GY) = Z

(FxG)Z

Interaction laws and Chu spaces ctd

@ We do not immediately get another chacterization of the
category of monad-comonad interaction laws.

@ That's because the standard monoidal structure on the
above category of Chu spaces is constructed from the
Day convolution.

@ But we want a monoidal structure from composition.

Interaction laws and Hasegawa's glueing

@ Given a duoidal category (F,/, -, J, x) closed wrt. (J,x).
e Given also a monoid (R, 7R, uf)in (F,1,-).

@ Define (—=)°: F* - F by G° =G « R.

@ (—)° is lax monoidal.

@ By an argument by Hasegawa, the comma category
F 1 (—=)° has a (/,-) based monoidal structure.

e Now take F = [C,C] with (/,-) its composition monoidal
and (J,x, —) its Day convolution SMC structure
(if x and — are defined for all functors).

@ Then these categories are isomorphic:

o R-residual monad-comonad interaction laws;
(0]

e monoids in the monoidal category [C,C] | (—)°.

Relation to effect handling (jww Niels Voorneveld)

@ An R-residual mnd-cmnd int law of T, D explains how
some of the effects of a computation are dealt with by
the environment, some are left alone or transformed.

@ Given

e anint law ¢y z: T(Y = Z) = DY = RZ,
e a coalgebra (B,3: B — DB) of D
(a coeffect producer) and
e an algebra (C,v: RC — C) of R
(a residual effect handler)
we get an algebra
(B=C,(f=7)otpgc: T(B=C)—B=1C)
of T (an effect handler).

@ In fact, mnd-mnd interaction laws are in a bijection with
carrier-exponentiating functors from
(Coalg(D))® x Alg(R) — Alg(T).

Takeaway

@ A single framework for talking about computations,
environments and interaction

@ Lots of mathematical structure around, a lot can be
stated very generally

@ What are some recipes for calculating the Sweedler dual?
@ Sweedler dual in the residual case

@ Relationship of interaction laws to session types

