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Roadmap: The linear-non-linear substitution monad

Motivation:

= Differential A-calculus

Goal:

= Axiomatisation using generalized multicategories.

Tool:

= A colimit construction applied to combine 2-monads on Cat

Results:

= The colimit is a 2-monad.

= Charaterization of its algebras.



Linear-non-linear substitution

Substitutions in differential 1-calculus



Differential A-Calculus (Ehrhard-Regnier 2003, Ehrhard 2018)

Semantical observation: in quantitative models of Linear Logic,
programs are interpreted by smooth functions, hence differentiation.

Programs Functions
M, N f,g
Variable X X Variable
Abstraction Ax.M f:xe f(x) Map
Application (Ax.M)N fog:xm f(g(x)) Composition
Differentiation Dax.M - N u, x — Df.(u) Derivation



Linear and Non-Linear substitutions in Differential 1-calculus

Linear approximation
Substitution
f(x)

Ax.M)N —  M[x\N] Df (u)

DAx.M-N — aAx. (ﬂ . N)
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Linear and Non-Linear substitutions in Differential 1-calculus

Substitution

(Ax.M)N —  M[x\N]

DAx.M-N — aAx. (ﬂ - N
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Linear approximation
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Linear-non-linear substitution

Type system and term calculus



A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)

X1 :al...,xe:ae | yl:gl,...,yn:gnl—t:c
2 L
Linear

Non-Linear

Ix:a|Art:b

Linear rulesss ———(———
x:a|Arx:a F'|Arax?t:a—ob

I'Ars:a—ob I'"|Art:a
LIV |Ar(s)t: b

A, x:art:b

Non-linear rules: ——F——F———F————
IF'|Ax:brx:b T'|ArAx2t:a— b

IF'lArs:a—b - |Art:a
T'|Ar(s)t:b

I', x:a|Art:b
I'lA, x:art:b

Linear-non-linear rule:
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A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)
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A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)
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A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)
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A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)

X1 :al...,xe:ae | yl:gl,...,yn:gnl—t:c
2 L
Linear

Non-Linear

Ix:a|Art:b

Linear rulesss ———(———
x:a|Arx:a F'|Arax?t:a—ob
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A term calculus for Linear-non-linear Logic

(Benton-Bierman-de Paiva-Hyland 1993, Barber 1996)

X1 :al...,xe:ae | yl:gl,...,yn:gnl—t:c
2 L
Linear

Non-Linear

I'x:a Ft:b

MLL ——mm
Xx:a Fx:a r FAx?.t:a—ob
I' rs:a—ob ' +t:a
r,r’ F(s)t:b

Lealeulus A, x:art:b
- uu -

Ax:brx:b ArAx2t:a— b

Ars:a—b Art:a

Ar(s)t:b



What is a model of substitution ?

combining linearity and non-linearity



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In Multiplicative Linear Logic, a proof is interpreted as a morphism

X1 :d1,...,Xpagkt:.cC as a®---®ap —o C.



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In Multiplicative Linear Logic, a proof is interpreted as a morphism

X1 :d1,...,Xpagkt:.cC as a®---®ap —o C.

D %Q_c



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In A-calculus, a term is interpreted as a morphism

x1:by, . xnib,FticC as by x---xb, —c.



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In A-calculus, a term is interpreted as a morphism

x1:by, . xnib,FticC as by x---xb, —c.
L, _[
_L_*,_-—\/— b
c
L_q/
33

b —

~4 5)



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In A-calculus, a term is interpreted as a morphism

x1:by, . xnib,FticC as by x---xb, —c.
1b;®---®!b,—oc



Axiomatic using Categories

In a category X, equipped with the right structure (SMCC/ CCC)
Types are interpreted as objects
Contexts are interpreted as objects (products/tensors)

Terms are interpreted as morphisms

Substitution is interpreted as composition

In A-calculus, a term is interpreted as a morphism

x1:by, . xnib,FticC as by x---xb, —c.
1b;®---®!b,—oc

In Inl A-calculus, x; : a1,...,x¢ : a¢ | Y, by,...,y :b,Ft:cas
iy = —_n —

7@ - ®aelb ® --8lb —oc.



Axiomatic using generalized multicategories

A multicategory is a set of operations:

Together with identity and multicomposition:




Axiomatic using generalized Multicategories

In a multicategory

Types are interpreted as objects
Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.
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Axiomatic using generalized Multicategories

In a multicategory

Types are interpreted as objects
Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.

In A-calculus,
a term is interpreted as a multimorphism in a cartesian multicategory:

Lo
yiiby....ynib,Ft:cC L
denoted ’t} =
enoted as h
él""’énﬁc' %4—'



Axiomatic using generalized Multicategories

In a multicategory
Types are interpreted as objects
Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.

What are the operations for the Linear-non-linear calculus,

a term is interpreted as a multimorphism in a generalized multicategory:

XtiaL..Xeiae|lyiiby, .. ynib, FticC
denoted as %;4?; =
=g
31,...,35,91,...,9,1—)6. b’



Axiomatic using generalized Multicategories

In a multicategory
Types are interpreted as objects
Terms are interpreted as multimorphisms

Substitution is interpreted as multicomposition.

What are the operations for the Linear-non-linear calculus,

a term is interpreted as a multimorphism in a generalized multicategory:

XtiaL..Xeiae|lyiiby, .. ynib, FticC
denoted 5 ) :
enoted as b=
b
ay,...,ap by, ..., b, — c. =

Multicategories can be seen as profunctors combined with a monad.

(Fiore-Plotkin-Turi 1999, Tanaka-Power 2006)



Generalized Multicategories and Context Monads

A multicategory is a set of operations: M : 7 X°P x X — Set

e
The context is represented as
a sequence of objects via a —o
monad 7 on Cat.

e

Together with unit and multicomposition: Mo TM = M




Axiomatization using Multicategories via Profunctors

In a multicategory M : 7X° x X — Set

Types are interpreted as objects in X
Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo 7M = M
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In a multicategory M : 7X° x X — Set

Types are interpreted as objects in X

Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo 7M = M

In Multiplicative Linear Logic,
a term is interpreted in a symmetric multicategory: M : LX% x X — Set

X1 :a1,....Xpagkt:c as ai,...,ag —oc in M({ay,...,ar);¢c)

Algebras of £ are symmetric strict

monoidal categories

L X is the free one on X
(Fiore-Gambino-Hyland-Winskel 2007)



Axiomatization using Multicategories via Profunctors

In a multicategory M : 7X° x X — Set

Types are interpreted as objects in X
Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo 7M = M

In A-calculus,
a term is interpreted in a cartesian multicategory M : MX x X — Set

yiiby,....ynib,Ft:cC as by,...,b,—~c in M({by,....b,);c)

Algebras of M are the categories with
product L!.

- _L
MX is the free one over X b ¢ =
~3

(Tanaka-Power 2004, Hyland 2017)



Axiomatization using Multicategories via Profunctors

In a multicategory M : 7X° x X — Set

Types are interpreted as objects in X
Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo 7M = M

What is Q for a Mixed Linear-Non-Linear calculus
a term is interpreted in a generalized multicategory M : QX°P x X — Set:

X1:aL...Xeae|lyriby, .. yn b, Fticin M({ay,...,a¢ | by, ..., b,); C).
QX is the category whose objects are
mixed LNL sequences. b L
=2\
=
b,




Axiomatization using Multicategories via Profunctors

In a multicategory M : 7X° x X — Set

Types are interpreted as objects in X
Terms are interpreted as elements of M

Substitution is interpreted by the monadic structure Mo 7M = M

What is Q for a Mixed Linear-Non-Linear calculus
a term is interpreted in a generalized multicategory M : QX°P x X — Set:

X1:aL...Xeae|lyriby, .. yn b, Fticin M({ay,...,a¢ | by, ..., b,); C).
QX is the category whose objects are
mixed LNL sequences. b L
=2\
Is Q a monad ?
=
What are Q-algebras 7 b




A Colimit construction

To build the Linear-non-linear monad



colimits induced by a map in a category K

A
k
If 2: A— Bis a map in K, then the induced colimit is {L \

B—€>C

A f A k
= for any 4 =4

B—>D B—>C-7" > D

10



Colax colimits induced by a map in a 2-category K

A k
B

If 2: A— Bis a map in K, then the induced colax colimit is {L /
— C

4

10



Colax colimits induced by a map in a 2-category K

If 1: A— Bis amap in K, then the induced colax colimit is /1 /\/

B—(,)C

There are two universal aspects for 1-cells and 2-cells

B —)
A \ AW/ f
— T
. = ’ | ’
for any l;\ /rr‘?r Al r=r' st
B . D

S r’ 7
k — —l 2 —{
A . D = A——C _ D B on°” D =B——C _ D
10



Mixing Linear and Non-Linear contexts via a colimit
Remark:
= Every category with products is a symmetric strict monoidal category

Ax :(ar,...,ar) € LX > (ay,...,3,) € MX

11
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Mixing Linear and Non-Linear contexts via a colimit

Remark: A: L — M is a map of 2-monads
= Every category with products is a symmetric strict monoidal category

Ax :(ar,...,ar) € LX > (ay,...,3,) € MX

Wanted
= QX is in SymStMonCat and objects are (a1,...,as | by,....b,)
= QX contains Linear objects k: L — Q is a map of 2-monad

kx :{(a1,...,ap) e LX > (ay,...,a¢ | - ) e QX
= QX contains Non-Linear ones ¢: M — @ is almost a map of 2-monad

bx : (by....b) € MX > (| by,....b) € QX

Solution: Colax Colimit over A in the 2-category of SymStMonCat

LX o
NN

MX€—X>QX

ax, (ar....a) €RX( - | a35---,3,) . (a1,..,ae |- )

X1 :a1,...,X¢ a¢ |- Ft:b
L Xeia Ftib
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A Colimit construction

Q is a 2-monad on Cat and Q-algebras



Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

12
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/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

nt 2 Lw
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Properties of the QX from universality for 1-cell and 2-cell
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= QX is a symmetric strict monoidal category, i.e. an L-algebra

= QX is equipped with a strictly idempotent comonad

Ffroex X o omx B ax
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Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

= QX is equipped with a strictly idempotent comonad

Ffroex X o omx B ax

(a1,...,ac | by,..., by —>{ay,...,apby,...0b ) > (- |a,...,a,by,..

by)

n
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Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.
LX kx = /X the free symmetric st. monoidal category
a n i
xl % MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

= QX is equipped with a strictly idempotent comonad

fooex N o omx & ax
{a1,...,ac | by,...,b)y—>{ay,...,apby,...0 ) > (- |a,....,a,b,....0,)

X1:a1,...,x¢e ar | Art:b
ol xiian..LxeiapArt:b

F L idox

Blar,..vae | b,y i< 1 315 s@pbyse b)) > (at, . ae | by, b)y o,



Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products
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Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

= QX is equipped with a strictly idempotent comonad

Ffroex X o omx B ax

= QX is almost with products, i.e. a left-semi M-algebra:

MQX 5 Qx
7" mz M2z My pmz
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Properties of the QX from universality for 1-cell and 2-cell

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

= QX is a symmetric strict monoidal category, i.e. an L-algebra

= QX is equipped with a strictly idempotent comonad
hx kx

f: QX — MX —> QX
= QX is almost with products, i.e. a left-semi M-algebra:
Max S ax

= The induced left-semi L-algebras are equal:

rax 2% max 5 ax rax % ax 5 ax

12



Structure category of Q

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

Structure Category
= 7 is a symm. str. monoidal category, i.e. an L-algebra: L Z 5z
= Z is almost with products, i.e. a left-semi M-algebra: MZ 5z
= 7 is equipped with a strictly idempotent comonad

Nz z

7 < Z - MZ = Z

= The induced left-semi L-algebras are equal:

1z mMz5 7 L7757

13



Structure category of Q

Colimit in the 2-category of Symmetric Strict Monoidal Categories.

LX kx = /X the free symmetric st. monoidal category
/lxl % = MX the free category with products

MX —— QX = QX objects are (ay,...,a¢ | by,....b,)

Structure Category QX has this structure !
= 7 is a symm. str. monoidal category, i.e. an L-algebra: L Z 5z
= Z is almost with products, i.e. a left-semi M-algebra: MZ 5z
= 7 is equipped with a strictly idempotent comonad

Nz z

7 < Z - MZ = Z

= The induced left-semi L-algebras are equal:

£z Mz5 7 Vit B

13



A general colax colimit construction on 2-monads

LX kx
Let 4 : L — M a map of 2-monad on Cat. AX\L /\/
If L-algebras has colimits, then the colimit is ax

MX f—x> Qx

= Q-algebras are objects in the Structure Category and

= @ is a 2-monad on Cat.

The proof uses universality of the colimit.

14



It is not the end of the story

Does Q lifts from Cat to Prof ?



Multicategories as Profunctors with Context Monad

A multicategory can be seen as a profunctor in the Kleisli bicat of 7

M:X4+-TX M : TXP x X — Set

Together with unit and multicomposition: Mo 7TM = M
% >
> = >
> >

Q on Cat has to extend to Prof as /£ and M. Equivalently,

Does the presheaf pseudomonad Psh lifts to pseudo Q-algebras ?

(Tanaka 2005, Fiore-Gambino-Hyland-Winskel 2016)
15



Does Q extends from Cat to Prof ?

Wanted: The presheaf pseudomonad Psh lifts to pseudo Q-algebras.
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Does Q extends from Cat to Prof ?

Wanted: The presheaf pseudomonad Psh lifts to pseudo Q-algebras.

Conjecture: Pseudo Q-algebras are pseudo Structure Categories.

Problem: Pseudo Q-algebras are pseudo L-algebras, i.e. symmetric
monoidal categories. There is NO COLIMIT in the 2-category of
symmetric monoidal categories

Work in progress: Use a strictification to recover colimits.
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It is not the end of the story

Categorical axiomatizations ?



Can we bulid a @Q-multicategory from a LNL adjunction ?

Linear-non-linear adjunction (Benton 1994)
S

A monoidal adjunction X = Y
r
with X symmetric strict monoidal and Y with products
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= Y has products, so MY LN Y, we can build
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s Fli XS YD Xis only lax monoidal

= The two induced left-semi L-algebras are not equal
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Can we bulid a @Q-multicategory from a LNL adjunction ?

Linear-non-linear adjunction (Benton 1994)
S

A monoidal adjunction X = Y
r
with X symmetric strict monoidal and Y with products

Structure Category from a ?

= X is symmetric strict monoidal, so /X 20X
= Y has products, so MY LN Y, we can build

MXSmy Ly x
s Fli XS YD Xis only lax monoidal

= The two induced left-semi L-algebras are not equal

Work in progress: recover a structure category by going through
multicategories.
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It is not the end of the story

Differential 1-calculus axiomatization



Towards a multicategorical model of differential A-calculus

Substitution: linear-non-linear multicategories

Variable binding Ax.s (Fiore-Plotkin-Turi 1999, Hyland 2017)

= Closed structure which allows to turn an operation with n+ 1 inputs
to an operation with n inputs.
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Towards a multicategorical model of differential A-calculus

Substitution: linear-non-linear multicategories
Variable binding Ax.s (Fiore-Plotkin-Turi 1999, Hyland 2017)
= Closed structure which allows to turn an operation with n+ 1 inputs
to an operation with n inputs
Derivation u, x — D, f(u)
= Differential interaction nets

(Ehrhard-Regnier 2006)
= Differential categories

H]
IR
o)

(Blute-Cockett-Seely 2006)

Chain rule
= An additive structure due to —
the derivation of the

contraction.

_@£ :
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"The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise".

(E. Dijkstra, The Humble Programmer, ACM Turing Lecture, 1972)
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