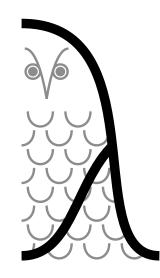
Asymptotic Approximation by Regular Languages

Ryoma Sin'ya Akita University

YR-OWLS 30 Sep 2020



This talk is based on

[S1] Ryoma Sin'ya. Asymptotic Approximation by Regular Languages, SOFSEM2021 (to appear), draft is available at

http://www.math.akita-u.ac.jp/~ryoma

Outline

- 1. Motivation of this work
- 2. Set of natural numbers and measure density
- 3. Density of regular languages and REG-measurability
- 4. REG-(im)measurability of several languages
- 5. Open problems

The Primitive Words Conjecture

[Dömösi-Horvath-Ito 1991]

• A non-empty word w is said to be **primitive** if it can not be represented as a power of shorter words, i.e., $w = u^n \Rightarrow u = w$ (and n = 1)

 Q_A denotes the set of all primitive words over A.

• The case #(A) = 1 is trivial ($\mathbb{Q}_A = A$). Here after we only consider the case $A = \{a, b\}$ for \mathbb{Q}_A , and simply write \mathbb{Q} .

Example: $ababa \in Q$ $ababab = (ab)^3 \notin Q$

Conjecture: Q is not context-free.

Why is "primitivity" important?

- Primitive words are like prime numbers. Fact: For every non-empty word w, there exists a unique primitive word v such that $w = v^k$ for some $k \ge 1$.
- For a word w = uv, we denote its *conjugate* (by u) vu by $u^{-1}wu = vu$. If u and v are non-empty, $u^{-1}wu$ is called a *proper* conjugate. Fact: w is primitive $\Leftrightarrow w \neq u^{-1}wu$ for every proper conjugate.

Note: if we regard a conjugation as a (partial) morphism on words, "w is primitive" means "w has no non-trivial automorphism" (cf. rigid graphs, rigid models in model theory).

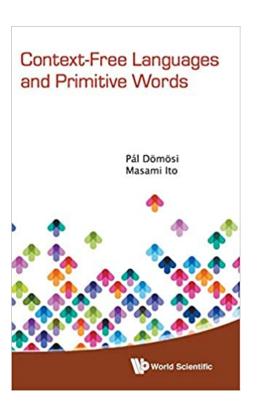
 Primitive words and its special class called Lyndon words play a central role in algebraic coding theory and combinatorics on words, also in text compression (cf. Lyndon factorisation, Burrows–Wheeler transformation).

The Primitive Words Conjecture

[Dömösi-Horvath-Ito 1991] On the Connection between Formal Languages and Primitive Words

Masami Ito

Pál Dömösi



[Dömösi-Ito 2014]

The Primitive Words Conjecture

[Dömösi-Horvath-Ito 1991] On the Connection between Formal Languages and Primitive Words

Masami Ito

Pál Dömösi

Szilárd Fazekas

My motivating intuition

(Intuition 1) Q is "very large" while there is no "good approximation" by regular languages.

(Intuition 2) Every "very large" context-free language has some "good approximation" by regular languages.

My (naive) idea: if we can formalise the above intuition and prove it, then the primitive words conjecture is true!

→ I proved that (the formal statement) of Intuition 1 is true, but Intuition 2 is false.

Approximation of languages

We adopt and extend Buck's *measure density* to formalise "approximation by regular languages".

- Measure density [Buck 1946]
- Rough set approximation [Păun-Polkowski-Skowron 1996]
- Minimal cover-automata [Câmpeanu-Sânten-Yu 1999]
- Minimal regular cover [Domaratzki-Shallit-Yu 2001]
- Convergent-reliability / Slender-reliability [Kappes-Kintala 2004]
- Bounded-ε-approximation [Eisman-Ravikumar 2005]
- Degree of approximation [Cordy-Salomaa 2007]

Outline

- 1. Motivation of this work
- 2. Set of natural numbers and measure density
- 3. Density of regular languages and REG-measurability
- 4. REG-(im)measurability of several languages
- 5. Open problems

Natural density of a subset of $\mathbb{N} (\ni 0)$

For an arithmetic progression

$$S = \{cn + d \mid n \in \mathbb{N}\}\$$

we define its *natural density* $\delta(S)$ as

• if
$$c=0$$
 (i.e., $S=\{d\}$) then $\delta(S)=0$

• if
$$c \neq 0$$
 (i.e., S is infinite) then $\delta(S) = \frac{1}{c}$

Intuitively, $\delta(S)$ represents the "largeness" of S. More formally, it represents the **probability** that a randomly chosen natural number n is in S.

Measure density of a subset of N ■

[Buck 1946] "The measure theoretic approach to density"

- For a set of numbers $S \subseteq \mathbb{N}$, its *outer measure* $\mu^*(S)$ of S is defined as $\mu^*(S) = \inf \left\{ \sum_i \delta(X_i) \mid S \subseteq X, X \text{ is a disjoint union of finitely many arithmetic progressions } X_1, \ldots, X_k \right\}$
- If a set $S \subseteq \mathbb{N}$ satisfies the condition

$$\mu^*(S) + \mu^*(\overline{S}) = 1 \qquad (\stackrel{\wedge}{\bowtie})$$

Theorem (Buck):

$$\mathcal{D}_0 \subsetneq \mathcal{D}_\mu$$

then we call $\mu^*(S)$ the measure density of S, and we say that "S is measurable".

• The class \mathscr{D}_{μ} of all subsets of \mathbb{N} satisfying $(\not \simeq)$ is the *Carathéodory extension* of $\mathscr{D}_0 = \big\{ X \subseteq \mathbb{N} \mid X \text{ is a disjoint union of finitely many arithmetic progresssions} \big\}$

Observation

• $\mathscr{D}_0 = \{X \subseteq \mathbb{N} \mid X \text{ is a finitely many disjoint union of arithemtic progressions}\}$ can be seen as the class REG_A of regular languages over a unary alphabet $A = \{a\}$:

$$\mathcal{D}_0 = \{ \{ |w| \mid w \in L \} \mid L \in REG_A \}$$

The set of lengths of words in a regular language L (i.e., the *Parikh image of L*) is a finite union of arithmetic progressions (i.e., *ultimately periodic set*).

If we can define a "density" notion on REG_A for an arbitrary alphabet A, we can naturally extend Buck's measure density to formal languages!

Outline

- 1. Motivation of this work
- 2. Set of natural numbers and measure density
- 3. Density of regular languages and REG-measurability
- 4. REG-(im)measurability of several languages
- 5. Open problems

• The asymptotic density $\delta_A(L)$ of a language L over A is defined as

$$\delta_{A}(L) = \lim_{n \to \infty} \frac{\#(L \cap A^{n})}{\#(A^{n})}$$

• The density $\delta_A^*(L)$ is defined as $\delta_A^*(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L \cap A^i)}{\#(A^i)}$

Fact: if $\delta_A(L)$ converges then $\delta_A^*(L)$ also converges, and moreover $\delta_A(L) = \delta_A^*(L)$.

But the converse is not true! trivial example: $L=(AA)^*$ $\delta_A(L)=\bot \text{ (diverges) but}$ $\delta_A^*(L)=1/2$

• The asymptotic density $\delta_A(L)$ of a language L over A is defined as

$$\delta_A(L) = \lim_{n \to \infty} \frac{\#(L \cap A^n)}{\#(A^n)}$$

• The density $\delta_A^*(L)$ is defined as $\delta_A^*(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L \cap A^i)}{\#(A^i)}$

Fact1 (cf. [Salomaa-Soittla 1978]): for any regular language L over A, $\delta_A^*(L)$ converges to a rational number.

Fact2 (cf. [S2]): A regular language L is not null (i.e., $\delta_A^*(L) \neq 0$) if and only if L is dense (i.e., $L \cap A^*wA^* \neq \emptyset$ for any $w \in A^*$).

Not null: measure theoretic "largeness" Dense: topological "largeness"

Note: "L is not null $\Rightarrow L$ is dense" is true for any language L, but "L is dense $\Rightarrow L$ is not null" is false for general non-regular languages.

Note: "L is not null $\Rightarrow L$ is dense" is true for any language L, but "L is dense $\Rightarrow L$ is not null" is false for general non-regular languages.

Infinite Monkey Theorem (cf. [Borel 1913]): $\delta_A(A^*wA^*) = 1$ for any $w \in A^*$.

L is not dense means that there exists w such that $L \cap A^*wA^* = \emptyset$ (such word is called a *forbidden word* of L), thus $\delta_A(L) \leq 1 - \delta_A(A^*wA^*) = 0$ by the infinite monkey theorem.

The semi-Dyck language $D = \{\varepsilon, (), (()), ()(), ((())), ...\}$ over $A = \{(,)\}$ is dense, but actually null.

$$(\)(()(\))$$

• The asymptotic density $\delta_A(L)$ of a language L over A is defined as

$$\delta_{A}(L) = \lim_{n \to \infty} \frac{\#(L \cap A^{n})}{\#(A^{n})}$$

• The density $\delta_A^*(L)$ is defined as $\delta_A^*(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L \cap A^i)}{\#(A^i)}$

Fact1 (cf. [Salomaa-Soittla 1978]): for any regular language L over A, $\delta_A^*(L)$ converges to a rational number.

Fact2 (cf. [S2]): A regular language L is not null (i.e., $\delta_A^*(L) \neq 0$) if and only if L is dense (i.e., $\forall w \in A^* \ L \cap A^*wA^* \neq \emptyset$).

Measure density of languages

We now consider the Carathéodory extension of the class of regular languages:

For
$$L \subseteq A^*$$
, its *outer measure* is defined as $\overline{\mu}_{REG}(L) = \inf\{\delta_A^*(R) \mid L \subseteq R \in REG_A\}.$

We say that L is REG-measurable if $\overline{\mu}_{REG}(L) + \overline{\mu}_{REG}(\overline{L}) = 1$ holds.

Lemma: the followings are equivalent

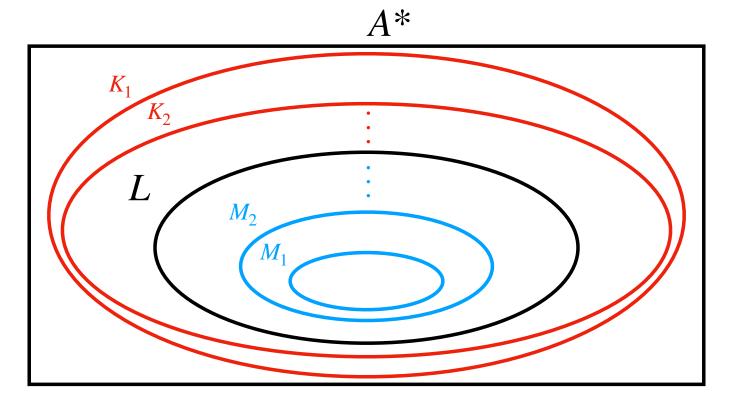
(1) L is REG-measurable

(2)
$$\overline{\mu}_{REG}(L) = \underline{\mu}_{REG}(L) = \sup\{\delta_A^*(R) \mid L \supseteq R \in REG_A\}$$

the *inner measure* of L

Note: $\underline{\mu}_{REG}(L) \leq \delta_A^*(L) \leq \overline{\mu}_{REG}(L)$ always holds (if $\delta_A^*(L)$ is defined).

Measure density of languages



L is REG-measurable if we can take an infinite sequence of pairs or regular languages $(M_n \subseteq L \subseteq K_n)_n$ such that $\lim_{n \to \infty} \delta_A^*(K_n \backslash M_n) = 0$.

Outline

- 1. Motivation of this work
- 2. Set of natural numbers and measure density
- 3. Density of regular languages and REG-measurability
- 4. REG-(im)measurability of several languages
- 5. Open problems

Theorem:

The semi-Dyck language $D = \{\varepsilon, ab, aabb, abab, ...\}$ over $A = \{a, b\}$ is REG-measurable.

Note: D is null, but there does not exist a null regular superset D $\subseteq L$. (D is dense implies D $\subseteq L$ is dense, and thus L is not null by Fact2)

Proof: Let $L_k = \{w \in A^* \mid |w|_a = |w|_b \mod k\}$ for each $k \ge 1$.

the # of occurrences of a in w

Thus the infinite sequence $(\emptyset, L_k)_{k>1}$ converges to D .

Theorem: The following languages are all REG-measurable.

1.
$$O_3 = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b \text{ or } |w|_a = |w|_c\}$$

2.
$$O_4 = \{ w \in \{ x, \bar{x}, y, \bar{y} \}^* \mid |w|_x = |w|_{\bar{x}} \text{ or } |w|_y = |w|_{\bar{y}} \}$$

- 3. $P = \{w \in \{a, b\}^* \mid w = reverse(w)\}$ (the set of all *palindromes*)
- 4. $G = \{a^{n_1}ba^{n_2}b\cdots a^{n_k}b \mid k \geq 1, n_i \neq i \text{ for some } i\}$ (the *Goldstine* language)

Note:

(1) and (2) are inherently ambiguous context-free languages [Flajolet 1985].

The generating function of (4) is transcendental (i.e., not algebraic) [Flajolet 1987], thus (4) is also inherently ambiguous by Chomsky-Schützenberger theorem.

Theorem: The following languages are all REG-measurable.

1.
$$O_3 = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b \text{ or } |w|_a = |w|_c \}$$

2.
$$O_4 = \{ w \in \{ x, \bar{x}, y, \bar{y} \}^* \mid |w|_x = |w|_{\bar{x}} \text{ or } |w|_y = |w|_{\bar{y}} \}$$

3.
$$P = \{w \in \{a, b\}^* \mid w = reverse(w)\}\$$
 (the set of all palindromes)

4.
$$G = \{a^{n_1}ba^{n_2}b\cdots a^{n_k}b \mid k \geq 1, n_i \neq i \text{ for some } i\}$$
 (the *Goldstine* language)

5.
$$K = S_1\{c\}A^* \cup S_2\{c\}A^*$$
 where $A = \{a, b, c\}$,
$$S_1 = \{a\}\{b^ia^i \mid i \ge 1\}^* \text{ and } S_2 = \{a^ib^{2i} \mid i \ge 1\}^*\{a\}^+.$$

Note: the density of (5) is transcendental [Kemp 1980], thus it is inherently ambiguous by the fact [Berstel 1972] that the density of every unambiguous context-free language is algebraic.

Theorem:

For every alphabet A and a language $L \subseteq A$, its suffix extension by $c \notin A$

 $L' = L\{c\}(A \cup \{c\})^*$ is REG-measurable.

Corollary: $K = (S_1 \cup S_2)\{c\}A^*$ is REG-measurable (because $S_1, S_2 \subseteq A \setminus \{c\}$).

Corollary: There exist uncountably many REG-measurable languages.

REG-gap: complexity of immeasurable sets

• For a language $L\subseteq A^*$ the difference $\overline{\mu}_{REG}(L)-\underline{\mu}_{REG}(L)$ of outer and inner measure is called the *REG-gap* of L.

REG-gap represents how a given language is "hard to approximate".

(Intuition 1) Q is "very large" while there is no "good approximation" by regular languages.

Formal statement: Q is co-null (i.e., $\delta_A^*(Q) = 1$) but $\underline{\mu}_{REG}(Q) = 0$.

(Intuition 2) Every "very large" context-free language has some "good approximation" by regular languages.

Formal statement: Every co-null context-free language L satisfies $\underline{\mu}_{\mathrm{REG}}(L) > 0$.

REG-immesurability of Q

(Intuition 1) Q is "very large" while there is no "good approximation" by regular languages.

Formal statement: Q is co-null (i.e., $\delta_A^*(Q) = 1$) but $\underline{\mu}_{REG}(Q) = 0$.

Theorem (1): Q is co-null.

Theorem (2): Every regular subset of Q is null. In particular, every non-null regular language contains infinitely many non-primitive words.

Note: The proof of Theorem (2) uses basic semigroup theory (Green's relation and Green's theorem)

REG-immesurability of context-free languages

(Intuition 2) Every "very large" context-free language has some "good approximation" by regular languages.

Formal statement: Every co-null context-free language L satisfies $\underline{\mu}_{\mathrm{REG}}(L) > 0$.

Theorem: A deterministic context-free language $\mathsf{M}_2 = \{w \in \{a,b\}^* \mid |w|_a > 2 |w|_b \} \text{ over } A = \{a,b\} \text{ is null but } \overline{\mu}_{\mathsf{RFG}}(\mathsf{M}_2) = 1, \text{ i.e., whose REG-gap is } 1.$

Corollary: $\overline{\mathbf{M}}_2$ is co-null (deterministic) context-free language with $\underline{\mu}_{\mathrm{REG}}(\overline{\mathbf{M}}_2)=0.$

Note: This counter-example is inspired by a result of [Eisman-Ravikumar 2011]. They showed that the *majority language* $M = \{w \in \{a,b\}^* \mid |w|_a > |w|_b\}$ is "hard to approximate".

REG-immesurability of context-free languages

Theorem: A deterministic context-free language

$$\begin{aligned} \mathbf{M}_2 &= \{w \in \{a,b\}^* \mid |w|_a > 2 \,|w|_b\} \text{ over } A = \{a,b\} \text{ is null } \\ \text{but } \overline{\mu}_{\mathsf{REG}}(\mathbf{M}_2) &= 1, \text{ i.e., whose REG-gap is } 1. \end{aligned}$$

Proof: $\delta_A^*(M_2) = 0$ can be shown by using the law of large numbers.

For a regular language L with $\delta_A^*(L) < 1$, we show that $M_2 \subsetneq L$ (i.e., $\overline{L} \cap M_2 \neq \emptyset$).

Let $\eta: A^* \to M = A^*/\simeq_{\overline{L}}$ be the syntactic morphism of \overline{L} .

$$c = \max_{m \in M} \min_{w \in \eta^{-1}(m)} |w| \qquad a^{4c+1}$$

 \overline{L} is non-null implies \overline{L} is dense (infinite monkey theorem)

 $\exists x, y \text{ such that } |x|, |y| \le c \text{ and } xa^{4c+1}y \in \overline{L}$

$$|xa^{4c+1}y|_b \le |x| + |y| \le 2c < \frac{1}{2}|xa^{4c+1}y|_a$$
 Thus $xa^{4c+1}y \in M_2$ and $M_2 \subsetneq L$

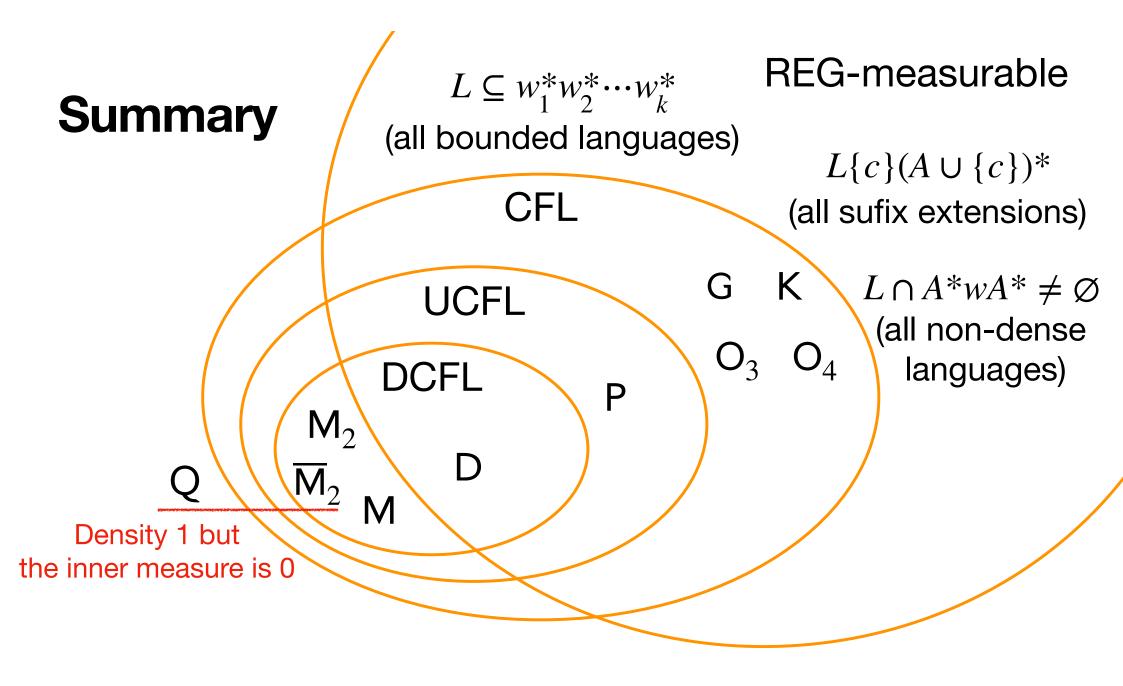
REG-immesurability of context-free languages

(Intuition 2) Every "very large" context-free language has some "good approximation" by regular languages.

Formal statement: Every co-null context-free language L satisfies $\underline{\mu}_{\mathrm{REG}}(L) > 0$.

Theorem: A deterministic context-free language $M_2 = \{w \in \{a,b\}^* \mid |w|_a > 2 |w|_b\}$ over $A = \{a,b\}$ is null but $\overline{\mu}_{RFG}(M_2) = 1$, i.e., whose REG-gap is 1.

Corollary: $\overline{\mathbf{M}}_2$ is co-null (deterministic) context-free language with $\underline{\mu}_{\mathrm{REG}}(\overline{\mathbf{M}}_2) = 0$.



Outline

- 1. Motivation of this work
- 2. Set of natural numbers and measure density
- 3. Density of regular languages and REG-measurability
- 4. REG-(im)measurability of several languages
- 5. Open problems

Open problems

1. Can we give an alternative characterisation of the class of null (resp. co-null) context-free languages?

Note: it is **undecidable** whether a given CFG generates null (resp. co-null) CFL [Nakamura 2019].

2. Can we give an alternative characterisation of REG-measurable (context-free) languages?

Note: it is **undecidable** whether a given CFG generates REG-measurable CFL, because REG-measurability is preserved under left/right quotients thus we can apply Greibach's metatheorem.

Open problems

- 3. Can we find a language class that "separates" $\mathbb Q$ and CFLs? i.e., is there a language class $\mathscr C$ such that
 - \cdot Q has full $\mathscr C$ -gap but no co-null context-free language has full $\mathscr C$ -gap, or
 - \cdot Q is $\mathscr C$ -immeasurable but every co-null context-free language is $\mathscr C$ -measurable?

Note: measurability can be parameterised by a language class \mathscr{C} :

Define the outer measure of L over A as

$$\overline{\mu}_{\mathscr{C}} = \{ \delta_A^*(K) \mid L \subseteq K \in \mathscr{C} \}$$

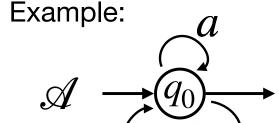
and L is said to be \mathscr{C} -measurable if $\overline{\mu}_{\mathscr{C}}(L) + \overline{\mu}_{\mathscr{C}}(\overline{L}) = 1$.

What's happen if we consider $\mathscr{C} = DCFL$, UCFL, CFL or UnCA?

Digression: constrained automata

• A constrained automaton is a pair (\mathcal{A}, S) of a finite automaton \mathcal{A} and a semi-linear set $S \subseteq \mathbb{N}^d$ whose dimension d is the # of transition rules of \mathcal{A} . (i.e., Presburger definable set)

 (\mathcal{A},S) accepts a word w iff there exists an accepting run ρ labeled by w and the vector (n_1,n_2,\ldots,n_d) is in S where n_i is the number of occurrences the i-th transition rule in ρ .



$$L((\mathcal{A}, S)) = MIX = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b = |w|_c\}$$
where $S = \{(n, n, n) \mid n \in \mathbb{N}\}$.

Digression: constrained automata

- The class of **unambiguous** constrained automata is a very well-behaved class:
 - O Many counting-type languages (including MIX, O_3 , O_4 , M and \overline{M}_2) are in UnCA (UnCA = the class of unambiguous constrained automata recognisable languages).
 - Every UnCA language has a holonomic generating function (cf. [Bostan et al. 2020]).
 - UnCA is closed under Boolean operations and quotients [Cadilhac et al. 2012].
 - The regularity for UnCA is decidable [Cadilhac et al. 2012].
 - The context-freeness for some subclass of UnCA is decidable [S3].

Open problems

1. Can we give an alternative characterisation of the class of null (resp. co-null) context-free languages?

- 2. Can we give an alternative characterisation of REG-measurable (context-free) languages?
- 3. Can we find a language class that "separates" Q and CFLs? i.e., is there a language class $\mathscr C$ such that
 - \cdot Q has full $\mathscr C$ -gap but no co-null context-free language has full $\mathscr C$ -gap, or
 - \cdot Q is $\mathscr C$ -immeasurable but every co-null context-free language is $\mathscr C$ -measurable?

References (approximation)

- [Buck 1946] The measure theoretic approach to density, *AJM*.
- [Eisman-Ravikumar 2005] Approximate recognition of non-regular languages by finite automata, ACSC2005.
- [Câmpeanu-Sânten-Yu 1999] Minimal cover-automata for finite languages, TCS.
- [Cordy-Salomaa 2007] On the existence of regular approximations, TCS.
- [Domaratzki-Shallit-Yu 2001] Minimal covers of formal languages, DLT2001.
- [Păun-Polkowski-Skowron 1996] Rough-Set-Like Approximations of Context-Free and Regular, IPMU1996.
- [Kappes-Kintala 2004] Tradeoffs between reliability and conciseness 570 of deterministic finite automata, JALC.

References (density, ambiguity, etc.)

- [Berstel 1972] Sur la densité asymptotique de langages formels, *ICALP1972*.
- [Borel 1972] Mécanique Statistique et Irréversibilité, *J. Phys.*
- [Bostan et al. 2020] Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series, ICALP2020.
- [Cadilhac et al. 2012] Unambiguous Constrained Automata, DLT2012.
- [Dömösi-Ito 2014] Context-Free Languages And Primitive Words.
- [Dömösi-Horvath-Ito 1991] On the Connection between Formal Languages and Primitive Words.
- [Flajolet 1985] Ambiguity and transcendence, ICALP1985.
- [Flajolet 1987] Analytic models and ambiguity of context-free languages, TCS.
- [Kemp 1980] A note on the density of inherently ambiguous context-free languages, Acta Informatica.
- [Nakamura 2019] Computational Complexity of Several Extensions of Kleene Algebra, Ph.D. Thesis (Tokyo Tech).
- [Salomaa-Soittla 1978] Automata Theoretic Aspects of Formal Power Series.

References (my work)

- [S1] Asymptotic Approximation by Regular Languages, SOFSEM2021 (to appear).
- [S2] An Automata Theoretic Approach to the Zero-One Law for Regular Languages, GandALF2015.
- [S3] Context-Freeness of Word-MIX Languages, DLT2020.

The full versions are all available at http://www.math.akita-u.ac.jp/~ryoma