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Model Checking

• Given a system and a specification, does the system 
satisfy the specification

System 
model property

MC

YesNo+CEX



Formal automated program repair

•Model checking finds bugs in the program
• Bug: A program run that violates the specification

•Repair tool automatically suggests repair(s)
• Repair: Changes to the program code, resulting in a 
correct program



We present two approaches

•To exploit formal verification techniques for 
program repair

• Must Fault Localization for Program Repair

• Assume, Guarantee or Repair 



Must Fault Localization 
for Program Repair

Joint work with Bat-Chen Rothenberg

CAV 2020
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Automated Program Repair

Patched Program
That is Correct

Buggy 
Program

Automated 
Program Repair
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Fault Localization

A buggy program
with violating run
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Fault Localization

Fault location set
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Fault Localization

Repair
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Fault localization

• Fault localization should focus the programmer’s attention on 
locations that are relevant for the bug

• Bad fault localization:
• Too restrictive might miss a potential repair
• Too permissive will cause an extra search work
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Fault localization

• Often – fault localization algorithms return a set of locations 
that may be relevant
• No guarantee that all returned locations are relevant
• Nor that every relevant location is returned

• We suggest a novel notion of must fault localization
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Repair scheme

An important notion:
• Repair scheme:

Identifies the changes to program statements, allowed by 
repair
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Repair scheme example

• Repair scheme  Smut

• Allows syntactic replacement of operators on the right-
hand-side of assignments and in conditions

• For example,
+  –
>   <
c  c+1
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Must fault localization

• Must fault localization algorithm: 
returns a must location set 
• for every buggy program and every bug

• Must location set:
Contains at least one location from any successful repair for the bug
 It is impossible to fix the bug using only locations outside this set
 Any repair for the bug must use at least one location from this set
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Must and Repair scheme

• Must notions depend on the chosen repair scheme

• A location set might be must for one repair scheme and 
non-must for another
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In this work

• We develop a fault localization algorithm 

• Prove that it is must with respect to Smut

• Implement it within the repair tool AllRepair

• Show significant speedups
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Our setting:
Formal Automated Program Repair

Specification • Formal specification: 

program should meet the 

specification for all inputs

• pass (bounded) formal 

verification
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Our setting: 
Search-Based Program Repair

Generate and Validate

Search Space
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Algorithm for must fault localization

• By example
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Example: Buggy program

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)
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Example: buggy program with buggy run

proc. foo(x, w)
1. t:= 0                              
2. y:= x-3                           
3. z:= x+3                           
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

I = x0, w0
t  0
y  -3
z  3
(0 > 3)

(-3 > 3)  assertion violation for I

21



Example: Program formula (SSA)

proc. foo(x, w)
1. t:= 0                              
2. y:= x-3                           
3. z:= x+3                           
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3                              
g0 = w0 > 3                            
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0 )                            
y2 = (g0? y1 : y0 )                           
 (y2 > z0)  (g0  t1 < x0)
}
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Example: Program formula (SSA) with 
satisfying assignment

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3                              
g0 = w0 > 3                            
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0 )                            
y2 = (g0? y1 : y0 )                           
 (y2 > z0)  (g0  t1 < x0)
}

I = x00, w00
t0  0
y0 -3
z0  3
g0  (0> 3) = false

…

y2  -3
(-3 > 3)  assertion violation for I
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foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3                              
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0 )                            
y2 = (g0? y1 : y0 )
 (y2 > z0) 
(g0  t1 < x0)
}



Must location set, based on dynamic slicing 

foo = {
t0 = 0
y0 = x0 – 3                    
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0 )
y2 = (g0? y1 : y0 )
 (y2 > z0)  (g0  t1 < x0)
}

slice(y2)  slice(z0) =
{ y2=(g0? y1:y0),  y0=x0-3,  g0=w0>3 } 
{ z0=x0+3 }

Must fault location set:
set of statements from the program
{ y:= x-3, z:=x+3, g:= w>3 }
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Implementing must fault localization

We implemented our must fault localization algorithm 
• within the AllRepair tool 

• AllRepair is based on generate – validate
• It returns all minimal repairs from the search space
• Based on Smut

• Minimal with respect to the number of changes 
(mutations) applied to the code
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Sound and Complete Mutation-
Based Program Repair: AllRepair

Search Space
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SMT solver 



Making AllRepair more efficient

Goal: reducing the search space

1. When a correct mutated program is generated 
(Validate succeeds)
• Eliminate non-minimal correct mutated programs

2. When a buggy mutated program is generated 
(Validate fails)
• Eliminate “similar” buggy mutated programs
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Buggy mutated program

Unsuccessful repair:
Buggy mutated program PM is generated

Elimination:
• Find a must location set F for the bug in PM

• F is a set of statements that guarantee the bug, if not 
changed

• Eliminate from the search space any mutated program, 
containing F
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Adding must fault localization to 
program repair: FL-AllRepair

Search Space
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Theorem: FL-AllRepair is sound and complete

That is, no good repair is eliminated by our pruning of the
search space 
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Experimental results - Benchmark

• TCAS
traffic collision avoidance system for aircrafts

• Codeflaws
solutions submitted by programmers to the programming 
contest site Codeforces
Loops were unwound 2, 5,8, 10 times

Specification: Checking equivalence to a correct version
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Each x value represents a single repair;  y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations
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Comparing times of AllRepair and FL-AllRepair
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x values represent a single repair;  y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

Comparing times of AllRepair and FL-AllRepair



Summary

• A novel must fault localization
• With respect to a repair scheme

• “must” and not “may”: you must change at least one of the 
lines returned

• Even though fault localization is must, its computation is 
relatively cheap
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Summary

• Our must fault localization significantly speeds up
the mutation-based automated program repair tool:  AllRepair
• By pruning the search space

• No good potential repair is lost!

 

36



Assume, Guarantee or Repair

Joint work with 
Hadar Frenkel, Corina Pasareanu, Sarai Sheinvald

TACAS 2020
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Goal

• Exploit the partition of the system into components

• Compositional model checking verifies small components and 
conclude the correctness of the full system

• If a bug is found, repair is applied to one of the components



Communicating systems

• C-like programs
• Each component is described as a control-flow graph 

(automaton)
• Enable using automata learning algorithms 

1: while (true)
2: pass = readInput;
3: while (pass ൑ 999) 
4:       pass = readInput;
5: pass2 = encrypt(pass);

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999



Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw
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Specifications
• Safety requirements – given as an automaton
• Behavior of the program through time
• “the entered password is different from the encrypted password”
• “there is no overflow”

ypw < 264

xpwxpw2

ypw 264 Xpw ==xpw2

r4
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Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a 
system satisfying assumption A

48

1M ║ 2M  P

A A ║ M1  P

M1║M2  P



Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a 
system satisfying assumption A

2. show that the other component M2 (the environment) satisfies A

1M ║ 2M  P

A A ║ M1  P
M2  A
M1║M2  P
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Assume Guarantee or Repair

Model Checking

1. Ai║ M1 |= P
Automata
Learning

L*

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds 
in M1 ║ M2

P violated 
in M1 ║ M2

cex║M1 | P ?

cex  L(Ai)

 Repair M2



Semantic repair 
(cex contains constraint)

• AGR returns a counterexample t (for xpw = 263),
which contains constraints

• t a formula (in SSA) representing t

t = (xpw>999)  (ypw=xpw)  (ypw=2ypw)  (xpw2=ypw)  (xpwxpw2)  (ypw264)

• Goal:
to make the counterexample infeasible by adding another 
constraint 𝓒 to it
• (t  𝓒  false)

• Using abduction



Semantic repair

• Using abduction to repair M2

• Find 𝓒 over the variables of M2 only such that  (t  𝓒  false)

• 𝓒 = ypwypw (t)

• After quantifier elimination and simplification we get:

• 𝓒 = (xpw < 263)
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Repair  

1: while (true)
2: pass = readInput;
3: while (pass ൑ 999) 
4:       pass = readInput;
5: pass2 = encrypt(pass);
6: assert(pass < 263 )

getEnc?xpw2

enc!xpw

xpw>999
xpw999

In?xpw

In?xpw

xpw< 263

assume (pass < 263)

M2



Syntactic repair 
(cex contains no constraints)

• The counterexample t contains no constraint
• It consists of communication actions and assignments

• Abduction will not help

3 methods to removing counterexample t:
• Exact: remove exactly t from M2

• Approximate:
• Aggressive:



Comparing Repair Methods (logarithmic scale)

#15, #16, #18, #19 apply also abduction



Adapting L* for communicating C programs

L* is supposed to learn a regular language, over finite alphabet

Our setting:
• Infinite-state programs with first-order constraints:

• L* Learns words over alphabet including statements in the code: 

assignment, communication action, constraints

• We identify a target language for L*, which is regular: 

• The set of words in M2: sequences of statements



Summary

• Learning-based Assume Guarantee algorithm for infinite-state 
communicating programs
• Adjustment of L* for handling infinite-state systems

• Incremental  use of subsequent L* applications

• AGR often produces small assumptions, much smaller than M2

• Semantic and syntactic repair



Summary

• Two approaches to automatic program repair
• based on formal method technologies



Thank you
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