Automated Program Repair
Using Formal Verification Techniques

Orna Grumberg
Technion, Israel

Online Worldwide Seminar on Logic and Semantics (OWLS)
August 26, 2020

Model Checking

 Glven a system and a specification, does the system
satisfy the specification

No+CEX Yes

Formal automated program repair

* Model checking finds bugs in the program
* Bug: A program run that violates the specification

* Repair tool automatically suggests repair(s)

* Repair: Changes to the program code, resulting in a
correct program

We present two approaches

* To exploit formal verification techniques for
program repair

* Must Fault Localization for Program Repair

* Assume, Guarantee or Repair

Must Fault Localization
for Program Repair

Joint work with Bat-Chen Rothenberg

CAV 2020

Automated Program Repair

Buggy Automated Patched Program
Program Program Repair That is Correct

Fault Localization

A buggy program
with violating run

Fault Localization

Fault location set

Fault Localization

Repair

Fault localization

 Fault localization should focus the programmer’s attention on
locations that are relevant for the bug

 Bad fault localization:
* Too restrictive might miss a potential repair
« Too permissive will cause an extra search work

10

Fault localization

« Often - fault localization algorithms return a set of locations
that may be relevant

* No guarantee that all returned locations are relevant
* Nor that every relevant location is returned

« We suggest a novel notion of must fault localization

11

Repalr scheme

An important notion:

* Repair scheme:
ldentifies the changes to program statements, allowed by
repair

12

Repalr scheme example

* Repair scheme S,
* Allows syntactic replacement of operators on the right-
hand-side of assignments and in conditions

» For example,
+ > -
> o <
c—> c+l

13

Must fault localization

» Must fault localization algorithm:
returns a must location set
« for every buggy program and every bug

* Must location set:
Contains at least one location from any successful repair for the bug
= It is impossible to fix the bug using only locations outside this set
= Any repair for the bug must use at least one location from this set

14

Must and Repalir scheme

* Must notions depend on the chosen repair scheme

* A location set might be must for one repair scheme and
non-must for another

15

In this work

* We develop a fault localization algorithm
* Prove that it is must with respect to S,
* Implement it within the repair tool AllRepair

 Show significant speedups

16

Our setting:
Formal Automated Program Repalr

Specification Formal specification:

program should meet the
specification for all inputs
e pass (bounded) formal

verification

17

Our setting:
Search-Based Program Repair

Search Space

g x]x|x/x[x/x]
[X[x[x|x|x
X[X[X|x|X|x
 x[xx[x/x/x}

Generate and Validate

18

Algorithm for must fault localization

* By example

19

0O NO Ol WDN P

Example: Buggy program

proc. foo(x, w)

t:=0

y:=X-3

Z:= X+3

If (w>3) then
.= z+w
assert (t<x)
y:=y+10

assert (y>z)

20

o N O O B W DN -

Example: buggy program with buggy run

proc. foo(x, w) | = X<-0, w«-0
t.=0 1«0
y:= X-3 y < -3
Z.= X+3 Z <« 3
If (w>3) then —(0 > 3)
t:= z+w
assert (t<x)
y:=y+10
assert (y>z) —(-3 > 3) assertion violation for |

21

®NO TR WM

Example

proc. foo(x, w)

t:=0

y:= X-3

Z:= X+3

If (w>3) then
t.= z+tw
assert (t<x)
y:=y+10

assert (y>z)

. Program formula (SSA)

(Pfoo:{

t,= 0

Yo =X~ 3

Zy =X+ 3

Jo = Wo> 3

t =Zp+ Wy

Y1 =Yo7+ 10

t,=(9° 1t 1)

Y2 = (90? Y1 : Yo)

= (V2> 2Zo) v (9o — 1< Xp)

}

22

Example: Program formula (SSA) with
satisfying assignment

(Pfooz{

t,=0

Yo =X%p-3

Zy =X+ 3

Jo = Wp>3

L, =2,+W,

Y1 = Yot 10

=097t :1)

Y2 = (90? Y1 = Yo)

= (V2> Zp) v (9o — T, < Xp)

}

| = Xy¢=0, wy<-0

t, <0

Yo¢— -3

Zy < 3

Jo < (0> 3) = false

Y, < -3
—(-3 > 3) assertion violation for |

23

Computing fault localization using dependency graphs

(Pfoo:{

t,= 0

Yo = %o~ 3

Zy =Xyt 3

Jo = Wp>3
tl:ZO+WO

Y1 =Yo* 10
=007t t)
Y2=(9? Y1 : Yo)
= (Y2>2p) v
—(Go = t < Xp)

}

X0 —— 70 w0 t0

Y%
O

yl <—y2

Static dependency graph

%y
Al

vl t2
g0

Dynamic dependency graph
For bug in which g, is false

24

Must location set, based on dynamic slicing

(Pfoo:{

t,=0

Yo = Xp— 3

Zy =X+ 3

Jo = Wp>3

=2+ W,

Y1 =Yt 10

t,=(9°t [1)

Y2 = (907 Y1 : Yo)

= (V2> 2Zp) v =(gg = ;< Xp)

}

slice (y,) v slice (z,) =

{ v,=(90? y1:y0), Yg=X3-3, gg=Wy>3 } U
{ Zp=%,+3 }

Must fault location set:
set of statements from the program
{y:=x-3, z:=x+3, g:=w>3 }

25

Implementing must fault localization

We implemented our must fault localization algorithm
« within the AllRepair tool

* AllRepair is based on generate - validate

* It returns all minimal repairs from the search space
« Based on S

mut

* Minimal with respect to the number of changes
(mutations) applied to the code

26

Sound and Complete Mutation-
Based Program Repair: AllIRepair

Search Space

x| x|x|x[x/x]
[X[x[x|X[x

\ / SMT solver

B
N

27

Making AllRepair more efficient
Goal: reducing the search space

1. When a correct mutated program is generated
(Validate succeeds)

 Eliminate non-minimal correct mutated programs

2. When a buggy mutated program is generated
(Validate fails)

 Eliminate “similar” buggy mutated programs

28

Buggy mutated program

Unsuccessful repair:
Buggy mutated program P,, is generated

Elimination:

* Find a must location set F for the bug in P,,
 F Is a set of statements that guarantee the bug, If not
changed

« Eliminate from the search space any mutated program,
containing F

29

Adding must fault localization to
program repair: FL-AlIRepalr

Search Space

x| x|x|x[x/x]
[X[x[x|X[x

[x[x]x[x|x
x| x[x|x[xx
f x(xx x|x[x}

B
N

Theorem: FL-AllRepair is sound and complete

That is, no good repair is eliminated by our pruning of the
search space

31

Experimental results - Benchmark

* TCAS
traffic collision avoidance system for aircrafts

 Codeflaws
solutions submitted by programmers to the programming
contest site Codeforces
Loops were unwound 2, 5,8, 10 times

Specification: Checking equivalence to a correct version

32

Comparing times of AllRepair and FL-AllRepair

(a) Fast repairs (< 5s)
| | |

Each X value represents a single repair; VY represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

33

Comparing times of AllIRepair and FL-AllRepair

(b) Medium repairs (5 — 240s) (c) Slow repairs (> 240s)
60 | [—o— an | | » | 3,600 | [o ar |
—m— FLAR 3.000 |- — @ FLAR
10 L | 2,400 |-
1,800 |
20 | 1,200 |-
600 |-
0 = 0

X values represent a single repair; Y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

34

summary

« A novel must fault localization
« With respect to a repair scheme

« “must” and not “may”’: you must change at least one of the
lines returned

 Even though fault localization is must, its computation is
relatively cheap

35

summary

« Our must fault localization significantly speeds up

the mutation-based automated program repair tool: AllRepair
« By pruning the search space

* No good potential repair is lost!

36

Assume, Guarantee or Repailr

Joint work with
Hadar Frenkel, Corina Pasareanu, Sarai Sheinvald

TACAS 2020

37

Goal

 Exploit the partition of the system into components

« Compositional model checking verifies small components and
conclude the correctness of the full system

« If a bug is found, repair is applied to one of the components

Communicating systems

* C-like programs

« Each component is described as a control-flow graph
(automaton)

« Enable using automata learning algorithms

getEnc?Xpw2 M,

1: while (true)

2: pass = readlnput;

3: while (pass < 999)

4: pass = readlnput;

5 pass2 = encrypt(pass);

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Example

« Components synchronize over common channels

getEnc?Xpw2 M,

Specifications

 Safety requirements - given as an automaton

« Behavior of the program through time

* “the entered password is different from the encrypted password”
* “there Is no overflow”

In?xp,

Specifications

 Safety requirements - given as an automaton

« Behavior of the program through time

* “the entered password is different from the encrypted password”
* “there is no overflow”

In?xp,

Assume-Guarantee (AG) Rule

1. check if a component M, guarantees P when it is a part of a
system satisfying assumption A

=P)

Al M =P

M, || M, =P

48

Assume-Guarantee (AG) Rule

1. check if a component M, guarantees P when it is a part of a
system satisfying assumption A

2. show that the other component M, (the environment) satisfies A

A A " M; =P
M, = A
M, | =P m)| m|m,=P

Assume Guarantee or Repair

counterexample - strengthen assumption

v

Automata
Learning
L*

Model Checking

a

v

LA M |=P

false

true

\ 4

true
false
cex ¢ L(A)

Y

P holds
in My || M,

P violated
inM, || M,

—> Repair M,

50

Semantic repair
(cex contains constraint)

AGR returns a counterexample t (for x,,, = 2°9),
which contains constraints

o, a formula (in SSA) representing t

¢ = (Xpw>999) A (ypw:Xpw) A (y’pwzz'ypw) A (Xpw2:y,pw) A (Xpw'_'txpWZ) A (y’pw2264)

Goal:

to make the counterexample infeasible by adding another
constraint C to it

e (p,A C — false)

Using abduction

Semantic repair

* Using abduction to repair M,
* Find € over the variables of M, only such that (¢, A C — false)

*C= Vypwvy’pw (ﬁ(Pt)

 After quantifier elimination and simplification we get:
° C —

52

OO~ WNEPE

: while (true)

pass = readlnput;

while (pass < 999)
pass = readlnput;

pass2 = encrypt(pass);

Syntactic repair
(cex contains no constraints)

* The counterexample t contains no constraint
* |t consists of communication actions and assignments

 Abduction will not help

3 methods to removing counterexample t:
 Exact: remove exactly t from M,

* Approximate:

 Aggressive:

Comparing Repair Methods (logarithmic scale)

I | I | I \

10* aggress E g 103 repair size L

i § approx. 1z Z % assumption size =

BB exact {1 2 [i

) i 1 & 2| |

107 ¢ 4 =

S w0th 48 T f 7 ;

= - 1 & i E i
8 i 1= ;

: 18 10 on A

= - y 7 :

< = / g i

Lot UUUNLLE A RRER Tl

— 100 - 7 /I /
#7 #8 #15#16 #18 #19 #22 #5 #6 #7 #8 #15#16 #18 #19 #22

#15, #16, #18, #19 apply also abduction

Adapting L* for communicating C programs

L* is supposed to learn a regular language, over finite alphabet

Our setting:
* Infinite-state programs with first-order constraints:

» L* Learns words over alphabet including statements in the code:

assignment, communication action, constraints

« We identify a target language for L*, which is regular:

* The set of words in M2: sequences of statements

summary

e Learning-based Assume Guarantee algorithm for infinite-state
communicating programs
e Adjustment of L* for handling infinite-state systems

e Incremental use of subsequent L* applications
e AGR often produces small assumptions, much smaller than M,

e Semantic and syntactic repair

summary

 Two approaches to automatic program repair
« based on formal method technologies

Thank you

