
Automated Program Repair

Orna Grumberg
Technion, Israel

Online Worldwide Seminar on Logic and Semantics (OWLS)
August 26, 2020

Using Formal Verification Techniques

Model Checking

• Given a system and a specification, does the system
satisfy the specification

System
model property

MC

YesNo+CEX

Formal automated program repair

•Model checking finds bugs in the program
• Bug: A program run that violates the specification

•Repair tool automatically suggests repair(s)
• Repair: Changes to the program code, resulting in a
correct program

We present two approaches

•To exploit formal verification techniques for
program repair

• Must Fault Localization for Program Repair

• Assume, Guarantee or Repair

Must Fault Localization
for Program Repair

Joint work with Bat-Chen Rothenberg

CAV 2020

5

Automated Program Repair

Patched Program
That is Correct

Buggy
Program

Automated
Program Repair

6

Fault Localization

A buggy program
with violating run

7

Fault Localization

Fault location set

8

Fault Localization

Repair

9

Fault localization

• Fault localization should focus the programmer’s attention on
locations that are relevant for the bug

• Bad fault localization:
• Too restrictive might miss a potential repair
• Too permissive will cause an extra search work

10

Fault localization

• Often – fault localization algorithms return a set of locations
that may be relevant
• No guarantee that all returned locations are relevant
• Nor that every relevant location is returned

• We suggest a novel notion of must fault localization

11

Repair scheme

An important notion:
• Repair scheme:

Identifies the changes to program statements, allowed by
repair

12

Repair scheme example

• Repair scheme Smut

• Allows syntactic replacement of operators on the right-
hand-side of assignments and in conditions

• For example,
+ –
> <
c c+1

13

Must fault localization

• Must fault localization algorithm:
returns a must location set
• for every buggy program and every bug

• Must location set:
Contains at least one location from any successful repair for the bug
 It is impossible to fix the bug using only locations outside this set
 Any repair for the bug must use at least one location from this set

14

Must and Repair scheme

• Must notions depend on the chosen repair scheme

• A location set might be must for one repair scheme and
non-must for another

15

In this work

• We develop a fault localization algorithm

• Prove that it is must with respect to Smut

• Implement it within the repair tool AllRepair

• Show significant speedups

16

Our setting:
Formal Automated Program Repair

Specification • Formal specification:

program should meet the

specification for all inputs

• pass (bounded) formal

verification

17

Our setting:
Search-Based Program Repair

Generate and Validate

Search Space

18

Algorithm for must fault localization

• By example

19

Example: Buggy program

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

20

Example: buggy program with buggy run

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

I = x0, w0
t 0
y -3
z 3
(0 > 3)

(-3 > 3) assertion violation for I

21

Example: Program formula (SSA)

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0) (g0 t1 < x0)
}

22

Example: Program formula (SSA) with
satisfying assignment

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0) (g0 t1 < x0)
}

I = x00, w00
t0 0
y0 -3
z0 3
g0 (0> 3) = false

…

y2 -3
(-3 > 3) assertion violation for I

23

t0

g0

w0z0x0

y0

y1

g0

g0
y2

t1 g0

g0
t2

z0 t0

t1

t2y1

x0

g0

y0

w0

y2

g0
g0

g0

g0

Static dependency graph Dynamic dependency graph
For bug in which g0 is false

Computing fault localization using dependency graphs

24

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0)
(g0 t1 < x0)
}

Must location set, based on dynamic slicing

foo = {
t0 = 0
y0 = x0 – 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0) (g0 t1 < x0)
}

slice(y2) slice(z0) =
{ y2=(g0? y1:y0), y0=x0-3, g0=w0>3 }
{ z0=x0+3 }

Must fault location set:
set of statements from the program
{ y:= x-3, z:=x+3, g:= w>3 }

25

Implementing must fault localization

We implemented our must fault localization algorithm
• within the AllRepair tool

• AllRepair is based on generate – validate
• It returns all minimal repairs from the search space
• Based on Smut

• Minimal with respect to the number of changes
(mutations) applied to the code

26

Sound and Complete Mutation-
Based Program Repair: AllRepair

Search Space

27

SMT solver

Making AllRepair more efficient

Goal: reducing the search space

1. When a correct mutated program is generated
(Validate succeeds)
• Eliminate non-minimal correct mutated programs

2. When a buggy mutated program is generated
(Validate fails)
• Eliminate “similar” buggy mutated programs

28

Buggy mutated program

Unsuccessful repair:
Buggy mutated program PM is generated

Elimination:
• Find a must location set F for the bug in PM

• F is a set of statements that guarantee the bug, if not
changed

• Eliminate from the search space any mutated program,
containing F

29

Adding must fault localization to
program repair: FL-AllRepair

Search Space

30

Theorem: FL-AllRepair is sound and complete

That is, no good repair is eliminated by our pruning of the
search space

31

Experimental results - Benchmark

• TCAS
traffic collision avoidance system for aircrafts

• Codeflaws
solutions submitted by programmers to the programming
contest site Codeforces
Loops were unwound 2, 5,8, 10 times

Specification: Checking equivalence to a correct version

32

Each x value represents a single repair; y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

33

Comparing times of AllRepair and FL-AllRepair

34

x values represent a single repair; y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

Comparing times of AllRepair and FL-AllRepair

Summary

• A novel must fault localization
• With respect to a repair scheme

• “must” and not “may”: you must change at least one of the
lines returned

• Even though fault localization is must, its computation is
relatively cheap

35

Summary

• Our must fault localization significantly speeds up
the mutation-based automated program repair tool: AllRepair
• By pruning the search space

• No good potential repair is lost!

36

Assume, Guarantee or Repair

Joint work with
Hadar Frenkel, Corina Pasareanu, Sarai Sheinvald

TACAS 2020

37

Goal

• Exploit the partition of the system into components

• Compositional model checking verifies small components and
conclude the correctness of the full system

• If a bug is found, repair is applied to one of the components

Communicating systems

• C-like programs
• Each component is described as a control-flow graph

(automaton)
• Enable using automata learning algorithms

1: while (true)
2: pass = readInput;
3: while (pass 999)
4: pass = readInput;
5: pass2 = encrypt(pass);

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Specifications
• Safety requirements – given as an automaton
• Behavior of the program through time
• “the entered password is different from the encrypted password”
• “there is no overflow”

ypw < 264

xpwxpw2

ypw 264 Xpw ==xpw2

r4

Specifications
• Safety requirements – given as an automaton
• Behavior of the program through time
• “the entered password is different from the encrypted password”
• “there is no overflow”

ypw < 264

xpwxpw2

ypw 264 Xpw ==xpw2

r4

Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a
system satisfying assumption A

48

1M ║ 2M P

A A ║ M1 P

M1║M2 P

Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a
system satisfying assumption A

2. show that the other component M2 (the environment) satisfies A

1M ║ 2M P

A A ║ M1 P
M2 A
M1║M2 P

50

Assume Guarantee or Repair

Model Checking

1. Ai║ M1 |= P
Automata
Learning

L*

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds
in M1 ║ M2

P violated
in M1 ║ M2

cex║M1 | P ?

cex L(Ai)

 Repair M2

Semantic repair
(cex contains constraint)

• AGR returns a counterexample t (for xpw = 263),
which contains constraints

• t a formula (in SSA) representing t

t = (xpw>999) (ypw=xpw) (ypw=2ypw) (xpw2=ypw) (xpwxpw2) (ypw264)

• Goal:
to make the counterexample infeasible by adding another
constraint 𝓒 to it
• (t 𝓒 false)

• Using abduction

Semantic repair

• Using abduction to repair M2

• Find 𝓒 over the variables of M2 only such that (t 𝓒 false)

• 𝓒 = ypwypw (t)

• After quantifier elimination and simplification we get:

• 𝓒 = (xpw < 263)

52

Repair

1: while (true)
2: pass = readInput;
3: while (pass 999)
4: pass = readInput;
5: pass2 = encrypt(pass);
6: assert(pass < 263)

getEnc?xpw2

enc!xpw

xpw>999
xpw999

In?xpw

In?xpw

xpw< 263

assume (pass < 263)

M2

Syntactic repair
(cex contains no constraints)

• The counterexample t contains no constraint
• It consists of communication actions and assignments

• Abduction will not help

3 methods to removing counterexample t:
• Exact: remove exactly t from M2

• Approximate:
• Aggressive:

Comparing Repair Methods (logarithmic scale)

#15, #16, #18, #19 apply also abduction

Adapting L* for communicating C programs

L* is supposed to learn a regular language, over finite alphabet

Our setting:
• Infinite-state programs with first-order constraints:

• L* Learns words over alphabet including statements in the code:

assignment, communication action, constraints

• We identify a target language for L*, which is regular:

• The set of words in M2: sequences of statements

Summary

• Learning-based Assume Guarantee algorithm for infinite-state
communicating programs
• Adjustment of L* for handling infinite-state systems

• Incremental use of subsequent L* applications

• AGR often produces small assumptions, much smaller than M2

• Semantic and syntactic repair

Summary

• Two approaches to automatic program repair
• based on formal method technologies

Thank you

59

