
Automated Program Repair

Orna Grumberg
Technion, Israel

Online Worldwide Seminar on Logic and Semantics (OWLS)
August 26, 2020

Using Formal Verification Techniques

Model Checking

• Given a system and a specification, does the system
satisfy the specification

System
model property

MC

YesNo+CEX

Formal automated program repair

•Model checking finds bugs in the program
• Bug: A program run that violates the specification

•Repair tool automatically suggests repair(s)
• Repair: Changes to the program code, resulting in a
correct program

We present two approaches

•To exploit formal verification techniques for
program repair

• Must Fault Localization for Program Repair

• Assume, Guarantee or Repair

Must Fault Localization
for Program Repair

Joint work with Bat-Chen Rothenberg

CAV 2020

5

Automated Program Repair

Patched Program
That is Correct

Buggy
Program

Automated
Program Repair

6

Fault Localization

A buggy program
with violating run

7

Fault Localization

Fault location set

8

Fault Localization

Repair

9

Fault localization

• Fault localization should focus the programmer’s attention on
locations that are relevant for the bug

• Bad fault localization:
• Too restrictive might miss a potential repair
• Too permissive will cause an extra search work

10

Fault localization

• Often – fault localization algorithms return a set of locations
that may be relevant
• No guarantee that all returned locations are relevant
• Nor that every relevant location is returned

• We suggest a novel notion of must fault localization

11

Repair scheme

An important notion:
• Repair scheme:

Identifies the changes to program statements, allowed by
repair

12

Repair scheme example

• Repair scheme Smut

• Allows syntactic replacement of operators on the right-
hand-side of assignments and in conditions

• For example,
+  –
>  <
c  c+1

13

Must fault localization

• Must fault localization algorithm:
returns a must location set
• for every buggy program and every bug

• Must location set:
Contains at least one location from any successful repair for the bug
 It is impossible to fix the bug using only locations outside this set
 Any repair for the bug must use at least one location from this set

14

Must and Repair scheme

• Must notions depend on the chosen repair scheme

• A location set might be must for one repair scheme and
non-must for another

15

In this work

• We develop a fault localization algorithm

• Prove that it is must with respect to Smut

• Implement it within the repair tool AllRepair

• Show significant speedups

16

Our setting:
Formal Automated Program Repair

Specification • Formal specification:

program should meet the

specification for all inputs

• pass (bounded) formal

verification

17

Our setting:
Search-Based Program Repair

Generate and Validate

Search Space

18

Algorithm for must fault localization

• By example

19

Example: Buggy program

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

20

Example: buggy program with buggy run

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

I = x0, w0
t  0
y  -3
z  3
(0 > 3)

(-3 > 3) assertion violation for I

21

Example: Program formula (SSA)

proc. foo(x, w)
1. t:= 0
2. y:= x-3
3. z:= x+3
4. if (w>3) then
5. t:= z+w
6. assert (t<x)
7. y:= y+10
8. assert (y>z)

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0)  (g0  t1 < x0)
}

22

Example: Program formula (SSA) with
satisfying assignment

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0)  (g0  t1 < x0)
}

I = x00, w00
t0  0
y0 -3
z0  3
g0  (0> 3) = false

…

y2  -3
(-3 > 3) assertion violation for I

23

t0

g0

w0z0x0

y0

y1

g0

g0
y2

t1 g0

g0
t2

z0 t0

t1

t2y1

x0

g0

y0

w0

y2

g0
g0

g0

g0

Static dependency graph Dynamic dependency graph
For bug in which g0 is false

Computing fault localization using dependency graphs

24

foo = {
t0 = 0
y0 = x0 - 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0) 
(g0  t1 < x0)
}

Must location set, based on dynamic slicing

foo = {
t0 = 0
y0 = x0 – 3
z0 = x0 + 3
g0 = w0 > 3
t1 = z0 + w0
y1 = y0 + 10
t2 = (g0? t1 : t0)
y2 = (g0? y1 : y0)
 (y2 > z0)  (g0  t1 < x0)
}

slice(y2)  slice(z0) =
{ y2=(g0? y1:y0), y0=x0-3, g0=w0>3 } 
{ z0=x0+3 }

Must fault location set:
set of statements from the program
{ y:= x-3, z:=x+3, g:= w>3 }

25

Implementing must fault localization

We implemented our must fault localization algorithm
• within the AllRepair tool

• AllRepair is based on generate – validate
• It returns all minimal repairs from the search space
• Based on Smut

• Minimal with respect to the number of changes
(mutations) applied to the code

26

Sound and Complete Mutation-
Based Program Repair: AllRepair

Search Space

27

SMT solver

Making AllRepair more efficient

Goal: reducing the search space

1. When a correct mutated program is generated
(Validate succeeds)
• Eliminate non-minimal correct mutated programs

2. When a buggy mutated program is generated
(Validate fails)
• Eliminate “similar” buggy mutated programs

28

Buggy mutated program

Unsuccessful repair:
Buggy mutated program PM is generated

Elimination:
• Find a must location set F for the bug in PM

• F is a set of statements that guarantee the bug, if not
changed

• Eliminate from the search space any mutated program,
containing F

29

Adding must fault localization to
program repair: FL-AllRepair

Search Space

30

Theorem: FL-AllRepair is sound and complete

That is, no good repair is eliminated by our pruning of the
search space

31

Experimental results - Benchmark

• TCAS
traffic collision avoidance system for aircrafts

• Codeflaws
solutions submitted by programmers to the programming
contest site Codeforces
Loops were unwound 2, 5,8, 10 times

Specification: Checking equivalence to a correct version

32

Each x value represents a single repair; y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

33

Comparing times of AllRepair and FL-AllRepair

34

x values represent a single repair; y represent the time in seconds
Timeout of 10 minutes; at most 2 mutations

Comparing times of AllRepair and FL-AllRepair

Summary

• A novel must fault localization
• With respect to a repair scheme

• “must” and not “may”: you must change at least one of the
lines returned

• Even though fault localization is must, its computation is
relatively cheap

35

Summary

• Our must fault localization significantly speeds up
the mutation-based automated program repair tool: AllRepair
• By pruning the search space

• No good potential repair is lost!

36

Assume, Guarantee or Repair

Joint work with
Hadar Frenkel, Corina Pasareanu, Sarai Sheinvald

TACAS 2020

37

Goal

• Exploit the partition of the system into components

• Compositional model checking verifies small components and
conclude the correctness of the full system

• If a bug is found, repair is applied to one of the components

Communicating systems

• C-like programs
• Each component is described as a control-flow graph

(automaton)
• Enable using automata learning algorithms

1: while (true)
2: pass = readInput;
3: while (pass ൑ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Example

• Components synchronize over common channels

𝑀ଶ
𝑴𝟏

𝑴𝟐getEnc?xpw2

In?xpw enc!xpw

In?xpw

read?xpw
xpw999

xpw>999

enc?ypw

getEnc!ypw

ypw:=2ypw

Specifications
• Safety requirements – given as an automaton
• Behavior of the program through time
• “the entered password is different from the encrypted password”
• “there is no overflow”

ypw < 264

xpwxpw2

ypw 264 Xpw ==xpw2

r4

Specifications
• Safety requirements – given as an automaton
• Behavior of the program through time
• “the entered password is different from the encrypted password”
• “there is no overflow”

ypw < 264

xpwxpw2

ypw 264 Xpw ==xpw2

r4

Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a
system satisfying assumption A

48

1M ║ 2M  P

A A ║ M1  P

M1║M2  P

Assume-Guarantee (AG) Rule

1. check if a component M1 guarantees P when it is a part of a
system satisfying assumption A

2. show that the other component M2 (the environment) satisfies A

1M ║ 2M  P

A A ║ M1  P
M2  A
M1║M2  P

50

Assume Guarantee or Repair

Model Checking

1. Ai║ M1 |= P
Automata
Learning

L*

real
error?

2. M2 |= Ai

Ai

counterexample – strengthen assumption

counterexample – weaken assumption

false

true
true

false

YN

P holds
in M1 ║ M2

P violated
in M1 ║ M2

cex║M1 | P ?

cex  L(Ai)

 Repair M2

Semantic repair
(cex contains constraint)

• AGR returns a counterexample t (for xpw = 263),
which contains constraints

• t a formula (in SSA) representing t

t = (xpw>999)  (ypw=xpw)  (ypw=2ypw)  (xpw2=ypw)  (xpwxpw2)  (ypw264)

• Goal:
to make the counterexample infeasible by adding another
constraint 𝓒 to it
• (t  𝓒  false)

• Using abduction

Semantic repair

• Using abduction to repair M2

• Find 𝓒 over the variables of M2 only such that (t  𝓒  false)

• 𝓒 = ypwypw (t)

• After quantifier elimination and simplification we get:

• 𝓒 = (xpw < 263)

52

Repair

1: while (true)
2: pass = readInput;
3: while (pass ൑ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);
6: assert(pass < 263)

getEnc?xpw2

enc!xpw

xpw>999
xpw999

In?xpw

In?xpw

xpw< 263

assume (pass < 263)

M2

Syntactic repair
(cex contains no constraints)

• The counterexample t contains no constraint
• It consists of communication actions and assignments

• Abduction will not help

3 methods to removing counterexample t:
• Exact: remove exactly t from M2

• Approximate:
• Aggressive:

Comparing Repair Methods (logarithmic scale)

#15, #16, #18, #19 apply also abduction

Adapting L* for communicating C programs

L* is supposed to learn a regular language, over finite alphabet

Our setting:
• Infinite-state programs with first-order constraints:

• L* Learns words over alphabet including statements in the code:

assignment, communication action, constraints

• We identify a target language for L*, which is regular:

• The set of words in M2: sequences of statements

Summary

• Learning-based Assume Guarantee algorithm for infinite-state
communicating programs
• Adjustment of L* for handling infinite-state systems

• Incremental use of subsequent L* applications

• AGR often produces small assumptions, much smaller than M2

• Semantic and syntactic repair

Summary

• Two approaches to automatic program repair
• based on formal method technologies

Thank you

59

