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Why This Talk?

Extensional properties of programs

» Does the program terminate?

in out .
« Does the program raise errors?
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Programs as black-boxes
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Mathematical foundation

o Type theory
« Do not care how output is

produced

« Denotational Semantics

. . . « Program equivalence
o Same |0 behaviour implies & 9

equivalent programs



Why This Talk?

Intensional properties of programs
in § out
T oe

Focus on how programs compute

Is the program efficient?
Is the program secure?

Is the program robust wrt
variations in the input?
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Example 2: Program Sensitivity
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Q. Is frobust to variations in the input?

k-robustness (aka sensitivity) = errors in input are amplified at most
of a factor k
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Program Equivalence

Goal: Identify programs with the same operational behaviour

Applications in program correctness, refactoring, and optmization

¢ HO Arithmetic
MAFf(x + 0) ~ Ax.Af.f(x)

o Structural equivalences
let x=a

y=b | ~letx=ainf(x)
in f(x)



Program Equivalence

Main feature: compositionality

| HF=
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Q. Program equivalence for intensional program analysis?



Program Equivalence

Q. Program equivalence for intensional program analysis?

Non-Interference (Abadi et al., 1999)

Vkey,, key, : [secret]t. Vpublic.

ke ke
Y1 f F—— “public Y2 f —

public— public—

An observer with public permission cannot infer whether the first input
is key, or key,



Program Equivalence

Metric-preservation (Reed & Pierce, 2010)

a~ bhb — a f “keb f —

k-robust programs preserve approximate equivalence up-to a factor k



Summing-up

Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

Security Sensitivity
[secret]T k]t
Non-interference  Metric-preservation

10



Summing-up

Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

Security Sensitivity
[secret]T [k]T
Non-interference  Metric-preservation

Further examples: dead-code analysis, strictness analysis,
resource/usage analysis, . ..
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Summing-up

Q. Can we give a uniform account of all these phenomena?

ial,



Summing-up

Q. Can we give a uniform account of all these phenomena?

Type Systems
Graded modal types (Orchard et al., 2019; Gaboardi et al., 2016)

ks

P

[secretlt  [klt  [copied]t [erased]t

Program Equivalence
This talk

all



Intensional vs Extensional PE

Extensional Program equivalence
Programs are equivalent for any observer
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Extensional Program equivalence
Programs are equivalent for any observer

Intensional Program equivalence
Programs are equivalent wrt observers’ features

o0 O O
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public secret
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Intensional vs Extensional PE

Intensional Program equivalence
Programs are equivalent wrt observers’ features

key, ~ key, : [secret]T

depend on the observer’s permission
public permission — key; ~ key,

secret permission — key; # key,

12



This Talk

Program equivalence for graded modal types

Metric Reasoning

Intensional equivalence
Eq. wrt possible worlds =

. . . . Program distance
Intensionality as in logic

Abstract compositionality

-interferen
Non-interference

Metric Preservation

13
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Bounded Exponentials
« (Girard et al., 1992)
» Resource-usage (M. Hofmann, 1999)
« Complexity (Lago & Hofmann, 2009)
« Sensitivty (Reed & Pierce, 2010)

Information-flow
 (Abadietal., 1999)
» (Volpano et al., 1996)
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Related Work

Bounded Exponentials

« (Girard et al., 1992) Information-flow
» Resource-usage (M. Hofmann, 1999)  (Abadi et al., 1999)
« Complexity (Lago & Hofmann, 2009) » (Volpano et al., 1996)

« Sensitivty (Reed & Pierce, 2010)

Graded and Quantitative Types  Coeffects

o (Wood & Atkey, 2020) o (Petricek et al., 2014)
o (Ghica & Smith, 2014) » (Gaboardietal., 2016)
 (Atkey, 2018) o (Bruneletal.,2014)

=" How code can be manipulated
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Related Work

Graded Modal Types
Modal types indexed by grades

Programming language Granule @ (Orchard et al., 2019)

Graded (co)monadic denotational semantics (Gaboardi et al.,
2016)

Logical relations (Abel & Bernardy, 2020)

15
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Graded Modal Types

Goal. Program equivalence for languages with graded modal types

Linearity — Data as resources

FAX(G6X):T—=TXT FAAYyX:T—0—T

Modalities — Code manipulations

lint]T code can be copied and erased
kit code can be used k-times
[secret|]t code cannot contains unclassified info

16



Graded Modal Types

Types Ti=...
Values a:=

Expressions en=...
Grade algebra

(37 <’ +, *’ 0, lﬁoo)

Example
Resource Usage Security
secret
/ \
rel
/ \ public

dead lin

| T— | [T

..| boxa

| letboxx =aine

S4 modality
ik

Sensitivity
([O’ OOL < +5050, 1)
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Graded Modal Types

Types Tu=...|T—1]|[lT
Values a:=...|boxa
Expressions e:=...|lethoxx=aine

Grade algebra S4 modality
(3) <’+, *’0, l’oo) U}T

Graded Judgements

X134, TiyeeesXn i, Tnbe:T

e manipulates x; according to j;

17
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Program Equivalence

Goal. Identify programs with the same operational and intensional
behaviour
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Program Equivalence

Goal. Identify programs with the same operational and intensional
behaviour

Operational Semantics

Programs evaluate to values: e || a

(Ax.e)a — elx := a]

let box x = (box a) ine — elx := a]

18



Program Equivalence

Goal. identify programs with the same operational and intensional
behaviour

Q. How to capture intensionality?
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Program Equivalence

Goal. identify programs with the same operational and intensional
behaviour

Q. How to capture intensionality?

Extensional PE Intensional PE
eRe’ wli-eRe’
R C Exp x Exp R:W — P(Exp x Exp)
Relations Relations over possible worlds

Possible worlds = Monoidal preoprder (W, <, o, ¢)

Semantics substructural logic (Urquhart, 1972; Routley & Meyer, 1973)

19



Categories of Relations

Category I/-Rel

o Objects: X,Y,...
o Arrows: R : (W, <) — (P(X x ¥),C)

20



Applicative Bisimilarity

Goal. Define notions of equivalence
« Contextual/CIU equivalence

 Logical relations (Abel & Bernardy, 2020)

 Applicative bisimilarity
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Applicative Bisimilarity

Goal. Define notions of equivalence
« Contextual/CIU equivalence

 Logical relations (Abel & Bernardy, 2020)

« Applicative bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
Idea. A-terms are functions

f=g < Wx.flx) =g(x)

Ax.e >~ Ax.e/ <= Va.elx:=al~e'lx:

Solution. Coinduction

a]©

21



Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric R C Exp x Exp s.t.

eRe’andela = e’ | a’andaRad’

Ax.e RAx.e’! = Va.e[x:=alRe'lx:=d]

22



Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric R C Exp x Exp s.t.

eRe’andela = e’ | a’andaRad’

Ax.e RAx.e’! = Va.e[x:=alRe'lx:=d]

Modal Applicative Bisimilarity
The largest symmetric I/-relation R s.t.

wl-eRe'andella — e’ |a’andwlFaRa’
w - Ax.e R \x.e’ =—> Va.wl-elx:=alRe'[x:=d]

w - boxaRboxa — 222

22



Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds
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Idea. Modal types act on possible worlds

Sensitivity
e l-boxa~boxa’:lklt < 35.¢ > kd. anddlFa~a’': T
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Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
e l-boxa~boxa’:lklt < 35.¢ > kd. anddlFa~a’': T

Security
public I- box a ~ box a’ : [secret]t < always
secret |- boxa ~ box a’ : [secret]t <= secretlFa~a’:t
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Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
el-boxa~boxa’:klt <= 35.e > kd. anddlFa~a’':T

Security
public I- box a ~ box a’ : [secret]t < always
secret |- boxa ~ box a’ : [secret]t <= secretlFa~a’:t

Q. How do we generalise these constructions?

23



Relation Lifting

PE

24



Relation Lifting

PE
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Relation Lifting

PE

F F#(~1) = ~p(<
(T)T (=) F(T)

Moral. Need ways to extend constructions on types/sets to relations

24



Relation Lifting

Lax Extension (Barr, 1970; Thijs, 1996)

A lax extension of F : Set — Set, is a mapping I' : W-Rel(X,Y) —
W-Rel(F(X), F(Y)) s.t.

I'(R);T'(S) € T'(R;S)
F(f) C T'(f)
F(f)T C T(fT)
RCS = TI'(R)CT(S)

Functor Lax Functor
Set W-Rel

lF — lr*‘(m

Set W-Rel

25



Relation Lifting

Q. What about modal types [j]t?
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Relation Lifting

Q. What about modal types [j]t?

Modal types = Graded comonadic lax extension of the identity

comonad

¥ Graded comonadic = graded S4 modalities

IZ |dentity = act on possible worlds only

26



Relation Lifting

Graded Comonadic Lax Extension

A graded comonadic lax extension is a J-indexed family of lax ex-
tensions A; : W-Rel(X, Y) — W-Rel(X, Y) antitonein J s.t.

C dup™; (A;(R) ® A(S)); dup

Identity Comonad Graded Lax Monoidal Comonad
Set W-Rel

iID — J/A“(ID)

Set W-Rel

26



Modal Applicative Bisimilarity

Modal Applicative Bisimilarity
The largest symmetric I/-relation R s.t.
wl-eRe' :tandella = e’ |a’andwl-aRa’: T

wi-fRf :t—>1 = Va.w'I-faRfa:*'

w Ik boxaRboxa’:[jlt = wikaAjR)a":t
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Modal Applicative Bisimilarity

Modal Applicative Bisimilarity
The largest symmetric I/-relation R s.t.
wi-eRe' :tandella — e’ |a’andwl-aRa’: 7

wi-fRf :t—>1 = Va.w'I-faRfa:*'

w Ik boxaRboxa’:[jlt = wikaAjR)a":t

Theorem (Compositionality)

Modal applicative bisimilarity is compositional

!

xjthee v viFe~e wlkaAj(~)a' :T

weviFex:=al ~e'lx:=a']: 1’

27



Metric Preservation, Non-Interference, etc

Metric Preservation (Reed & Pierce, 2010)
J=1[0,00] =W

XytThHf:v elFa~ad :t
kelFfix:=a] ~flx:=a']: 1’

Non-Interference (Abadi et al., 1999)
d = {public < secret} = W

Xiecret THF:T & a,a’ :t= publicl-filx:=a] ~filx:=a'] : 7

!

28



Modal Reasoning = Metric
Reasoning, via Lawvere




Program Distance

Relations
e~e’
Equivalence

W-relations
wli-e~e’
Intensional equivalence
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Program Distance

Relations
e~e’
Equivalence

W-relations
wli-e~e'
Intensional equivalence

Distances
d(e,e’) =¢
Pseudometric
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Program Distance

Relations W-relations Distances
e~e’ wli-e~e' d(e,e') =¢
Equivalence Intensional equivalence Pseudometric

Goal. Intensional equivalence = Program distance

15" Solid theory of program distance

=" Combined effects and coeffects

29



From Equivalences to Distances

Relations Distances
e~e’ d(e,e')=¢
{false, true} [0, o]

Equivalence Pseudometric

30



From Equivalences to Distances

Relations Distances Quantale-relations
e~e' d(e,e’) =¢ d(e,e’) =v
{false, true} [0, oo] (V, <, ®,k)
Equivalence Pseudometric V-equivalences

(Generalised) metric spaces as enriched categories (Lawvere, 1973)

Quantale (Rosenthal, 1990)
A complete lattice (V, <) with a monoid structure (V, ®, k)

veo\u=\/veu) \/veu=\/veu

i i

30



Quantale-relations

Example
Boolean Lawvere Strong Lawvere
({false, true}, <,\, T) ([0, ], >,+,0) ([0, 0], >, max, 0)
3-element chain Powerset Left cont. distributions
{J—) k, T} T(X) f: [01 OO] — [0’ 1]

Example

Monotone W-predicates
p:(W,<,0,8) = (2,<)

31



Quantale-relations

Category V-Rel

« Objects: X, Y,...

o Arrows: x: X xY—V

Identity
I(X’X) - k,’(X,Y) =1

Composition
(o5 B)(x,2) =\ yx(x,y) @ B(y,2)

32



Quantale-relations

Identity
I(X’X) = k,I(X:y) =1

Category V-Rel

« Objects: X, Y,...

. Arrows: a: X x Y >V | Composition

(O(; B)(X,Z) - \/y(X(X:y) o2 B(y,z)

(s x)(x,2) < a(x,2) <= infyax(x,y) + «(y,z) > a(x,z) <= TI

Boolean Lawvere Strong Lawvere
Transitivity  Triangle Inequality Strong Tl
Equivalence Pseudometric Ultra Pseudometric

32



Bisimilarity Distance

Rich literature on V-distances

—— Monoidal topology (D. Hofmann et al., 2014)

— Effectful applicative bisimilarity (Gavazzo, 2018)
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Bisimilarity Distance

Rich literature on V-distances

—— Monoidal topology (D. Hofmann et al., 2014)

— Effectful applicative bisimilarity (Gavazzo, 2018)

Bisimilarity Distance 6

The largest V-relation « s.t.

ey (MEMF) < o (Fx = al, F[x = a)

a

o< (boxa,boxa’) < Aj(ac)(a,a’)

133



Bisimilarity Distance

Comonadic Lax Extension
Aj : V-Rel(X,Y) — V-Rel(X, Y)

Non-expansive Lipschitz-continuous

Main Example x_foy x_foy
M) y) = - alx,y) “l < lﬁ A’(“)i - lﬁ

X*ﬁ Y X*>f 14

34



Bisimilarity Distance

Theorem (Abstract Metric Preservation)
Forx:; Tk e,e’: 7 andl-a,a’: T, we have:
Aj(8)(a,a") ® 5(e,e’) < d(elx:=al,e’'lx:=a'])
Theorem

ForV = (W’ < e, 5) — (2, <)a

AMP — Compositionality

34



Conclusion




Summing Up

Intensional program equivalence for graded modal types

Compositionality theorem for modal applicative bisimilarity

Same results for other equivalences
=" Bohm tree-like equivalences

w |- BT(e) = BT(e’)

Intensional equality as program distance

I Abstract Metric Preservation

35,



Summing Up

What do we gain from AMP?
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What do we gain from AMP? Combined effects and coeffects

Add algebraic operations (random, print, lookup, . ..) and monads
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Summing Up

What do we gain from AMP? Combined effects and coeffects

Add algebraic operations (random, print, lookup, . ..) and monads

(0:=2;8+3)P1 (£L:=3;—1)

Wik

Bisimilarity distance using monadic lax extension

Monadic Lax Extension Lax distributive law
I':V-Rel(X,Y) — V-Rel(T(X),T(Y)) A, ol CToA,

Abstract metric preservation theorem

36
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