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Motivation

Why are probabilities numbers in r0, 1s?

Two ways to go:
1. Consider more general possibilities, e.g.:

§ C pX , r0, 1sq

§ effect algebras / MV-algebras

2. Derive r0, 1s from some abstract conditions:

§ Freyd: r0, 1s is final coalgebra of midpoint operation
pa, bq ÞÑ 1

2pa` bq.

Can we get r0, 1s using more natural operations?

Yes! Using ω-effect-monoids
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Main result in brief

Theorem
Category of ω-effect-monoids is monadic over category of bounded
posets.

Theorem (Westerbaan2 & vdW, 2020)

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.

So: r0, 1s is unique non-initial, non-final irreducible Eilenberg-Moore
algebra of particular monad over bounded posets.
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Posets and Kalmbach extension

Definition
Let P be a poset and a, b P P.

§ P is bounded when it has min 0 and max 1.
BPos morphisms preserves 0 and 1.

§ An orthocomplement is p¨qK : P Ñ Pop with paKqK “ a and
a^ aK “ 0.

§ a and b orthogonal when a ď bK.

§ P is orthomodular when a ď bK implies a “ bK ^ pa_ bq.
OMP morphism preserves orthogonality and _.

Kalmbach extension
Forgetful functor U : OMP Ñ BPos has left adjoint K .

What are the algebras of the resulting Kalmbach monad?
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Effect algebras

Definition
An effect algebra pE ,>, 0, 1q has

§ partial commutative associative >,

§ with a > 0 “ a,

§ and @a unique aK with a > aK “ 1,

§ such that a K 1 implies a “ 0.

Examples

§ r0, 1s with aK :“ 1´ a.

§ A Boolean algebra: addition defined when a^ b “ 0 and then
a > b “ a_ b. aK is regular negation.

§ CstarpC,Aq – r0, 1sA with aK :“ 1´ a.

Theorem
EA – BPosK .
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Effect monoids

So r0, 1s is an effect algebra. But it also has a multiplication.
EA is symmetric monoidal. It’s monoids are the effect monoids.

Definition
An effect monoid pM,>, 0, 1, ¨q is effect algebra with associative
distributive multiplication:

pa > bq ¨ c “ pa ¨ cq> pb ¨ cq c ¨ pa > bq “ pc ¨ aq> pc ¨ bq

Examples:

§ r0, 1s.

§ Any Boolean algebra: a > b :“ a_ b, a ¨ b :“ a^ b.

§ tf : X Ñ r0, 1s continuousu for a compact Hausdorff space X
(i.e. unit interval of commutative unital C˚-algebra).
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ω-effect-algebras

§ pR,`, 0q does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.
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ω-effect-monoids

Theorem (Westerbaan, Westerbaan & vdW, LICS’20)

An ω-effect-monoid M embeds into M1 ‘M2 where

§ M1 is an ω-complete Boolean algebra

§ M2 “ tf : X Ñ r0, 1s cont.u for basically disconnected X .

Corollary

ω-effect-monoids are commutative.

Call M irreducible when M – M1 ‘M2 implies Mi “ t0u.

Corollary

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.
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Getting to the result

§ So r0, 1s is irreducible ω-effect-monoid and the only others are
t0u and t0, 1u.

§ Can we say this more categorically?

§ Well, effect algebras are Eilenberg-Moore algebras of Kalmbach
monad over BPos...

Theorem
ωEA is also monadic over BPos.

So r0, 1s is an irreducible monoid in an EM-category over BPos.

Theorem
ωEM is also also monadic over BPos.
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The result

Theorem
There is a monad T over BPos such that r0, 1s is the unique
irreducible non-initial, non-final T -algebra.

Furthermore, BPosT – ωEM and these algebras have

§ a partial order,

§ a (partially defined) countable addition,

§ a negation,

§ and a multiplication.

So we have captured what is special about r0, 1s.
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Conclusion and open questions

§ We’ve found a categorical construction of r0, 1s.

§ This captures its relevant structure as a space of probabilities.

§ Observation: t0u is final and t0, 1u is initial,
while r0, 1s is just right.

§ Result proven using Beck’s monadicity theorem. Can we do it
constructively?



Thank you for your attention!
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