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Introduction to Cartesian Differential Categories

Cartesian differential categories (CDC) come equipped with a differential combinator D that
formalizes the directional derivative from multivariable calculus (definition in a few slides...)

Blute, R. F. and Cockett, J. R. B. and Seely, R. A. G., Cartesian Differential Categories

For every map A
f−→ B, the differential combinator produces its derivative A× A

D[f ]−−→ B.

The main example is the category of Euclidean spaces Rn and smooth functions Rn F−→ Rm,

where the differential combinator is precisely the classical derivative Rn × Rn D[F ]−−−→ Rm.

An important class of examples are the Cartesian closed differential categories, which provide
the categorical semantics of the differential λ-calculus

Ehrhard, T. and Regnier, L, The differential lambda-calculus

Manzonetto, G., What is a categorical model of the differential and the resource λ-calculi?

Other interesting examples of CDC include any category with finite biproducts, polynomials
over a semiring, the coKleisli category of differential categories, the differential objects of
tangent categories, both free and cofree CDC, the Abelian functor calculus model, etc.



Recent Applications of Cartesian Differential Categories

CDC (and their variants) have found numerous applications in computer science such as in:

Causal computation:

Sprunger, D. and Katsumata, S., Differentiable causal computations via delayed trace

Incremental Computation:

Alvarez-Picallo, M. and Ong, C.-H. L., Change actions: models of generalised differentiation

Game Theory:

Laird, J. and Manzonetto, G. and McCusker, G., Constructing differential categories and deconstructing categories of games

Differentiable Programming:

Abadi, M. and Plotkin, G., A simple differentiable programming language

Cruttwell, G. and Gallagher, J. and Pronk, D. Categorical semantics of a simple differential programming language.

Machine Learning, with the introduction of Cartesian reverse differential categories:

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J. S. P., MacAdam, B., Plotkin, G., & Pronk, D. Reverse derivative categories.

which have been shown to be a suitable setting for reverse gradient descent:

Cruttwell, G. and Gavranović, B. and Ghani, N. and Wilson, P. and Zanasi, F. Categorical Foundations of Gradient-Based Learning.

Wilson, P. and Zanasi, F. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits.



Motivation: Jacobians and Gradients

Important concepts in differential calculus are the Jacobian matrix and the gradients, and are
also fundamental tools in automatic differentiation and machine learning algorithms.

Jacobians and gradients have yet to be formally defined in a CDC...

It is desirable to provide a (coordinate-free) characterization of Jacobians and gradients in a
CDC, specifically if one wishes to formalize said algorithms in a CDC.

This need for Jacobians and gradients is expressed by Katsumata and Sprunger where they
state following in the conclusion of their paper

Sprunger, D. and Katsumata, S., Differentiable causal computations via delayed trace

“Though we would like to say our abstract treatment of differentiation can be used
directly by machine learning practitioners, it appears this is not the case yet. The
derivative of a morphism in a Cartesian differential category is not the same as having an
explicit Jacobian or gradient. A gradient can be recovered from this morphism by applying it
to all the basis vectors, but when there are millions of parameters in a machine learning
model, this idea is computationally disastrous.”

Today’s Story: Jacobians and gradients in the context of Cartesian differential categories.



Recap of Jacobians and Gradients

Recall that for a smooth function Rn F=〈f1,...,fn〉−−−−−−−−→ Rm, its Jacobian matrix at point ~x ∈ Rn is
given by the n ×m matrix J(F )(~x) whose coordinates are the partial derivatives:

J(F )(~x) :=


∂f1
∂x1

(~x) ∂f1
∂x2

(~x) . . . ∂f1
∂xn

(~x)
∂f2
∂x1

(~x) ∂f2
∂x2
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∂xn
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...
...
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...

∂fm
∂x1

(~x) ∂fm
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∂xn
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The Jacobian matrix at ~x ’s associated R-linear function is called the total derivative of F ,
and evaluating this linear function at ~y results in the derivative D[F ](~x , ~y)

Thus, the Jacobian of F can be interpreted as a map Rn J(F )−−−→ LIN(Rn,Rm) – which is a
special case of both the Fréchet derivative and the Gateaux derivative.

For a smooth function Rn f−→ R, its gradient at ~x ∈ Rn is the transpose of its Jacobian at ~x :

∇(f )(~x) = J(F )(~x)T ∈ Rn =
[
∂f
∂x1

(~x) ∂f
∂x2

(~x) . . . ∂f
∂xn

(~x)
]

Thus, the gradient can be interpreted as a map Rn ∇(f )−−−→ LIN(R,Rn).

So there seems to be currying and closed structure going on...



This closed idea...

As suggested by Katsumata and Sprunger:

“We think that by adding some structure to Cartesian differential categories, such as a
designated closed subcategory, we could give a theoretical treatment allowing for more
explicit representation of Jacobians.”

one’s first attempt might be to consider a Cartesian closed setting, such as models of the
differential λ-calculus, and then define the Jacobian as the curry of the derivative.

While this is a very reasonable and promising idea where one can get quite far in extracting
the main properties of the Jacobian, there is a flaw!

Unfortunately, this approach would exclude numerous examples of CDC, specifically those
with a “finite-dimensional flavour” and many machine learning related models... such as the
category of real smooth functions.

So another approach is required...



How to fix it: internal linear homs!

Note that codomain of the Jacobian is LIN(Rn,Rm), which is isomorphic to Rnm... so an
object in the category of smooth functions.

So while the category of smooth functions is not Cartesian closed, it does have a sensible
notion of internal linear homs.

Internal linear homs are a key concept in Vákár’s recent work on automatic differentiation:

Vákár, M., CHAD: Combinatory Homomorphic Automatic Differentiation

There is a canonical notion of linearity which is induced by the differential combinator in a
CDC, which coincides with the classical notion of linearity... So...



Summary of main ideas:

Main Definition: Linearly closed Cartesian differential category, which is a CDC with internal
linear hom L(A,B) (which can be interpreted as an object which represents the set of linear

maps from A to B), a bilinear evaluation map L(A,B)× A
ε`−→ B, and the ability of currying

maps which are linear in their second argument.

The Jacobian of A
f−→ B is defined as the curry of A× A

D[f ]−−→ B, A
J(f ):=λ`(D[f ])−−−−−−−−−→ L(A,B)

For gradients, we require the extra notion of linear transposes L(A,B)
τ−→ L(B,A). So the

gradient of A
f−→ B is equal to the transpose of its Jacobian, A

∇(f ):=τ◦J(f )−−−−−−−−−→ L(B,A).

In future work, these formal notions of Jacobians and gradient will be particularly useful
when generalizing and applying automatic differentiation and machine learning algorithms,
such as back-propagation or (reverse) gradient descent, in the setting of a C(R)DC.

Ok now let’s give some details!
But not full details because of time...for all the nitty-gritty details see the paper!



Cartesian Differential Categories - Definition

Definition

A Cartesian differential category is a category X with finite products such that:

Each hom-set X(A,B) is a commutative monoid with zero 0 ∈ X(A,B) and addition

X(A,B)× X(A,B)
+−→ X(A,B), such that pre-composition preserves the additive structure:

(f + g) ◦ a = f ◦ a + g ◦ a 0 ◦ a = 0

A differential combinator D, which is a family of operators X(A,B)
D−→ X(A× A,B),

f : A→ B

D[f ] : A× A→ B

where D[f ] is called the derivative of f , and which satisfies seven axioms which capture the
basics of the derivative from differential calculus (such as the chain rule, additivity in its
second argument, symmetry of the partial derivatives, etc.)

To help us, we will use the following term logic 1:

D[f ](a, b) :=
df (x)

dx
(a) · b

1There is a sound & complete term logic for CDC. Anything we can prove using the term logic, holds in any CDC. Super useful!



Cartesian Differential Categories - Main Example

Example

Define SMOOTH as the category whose objects are the Euclidean real vector spaces Rn and

whose maps are the real smooth functions Rn F−→ Rm between them. SMOOTH is a CDC where
the differential combinator is defined as the directional derivative of a smooth function.

A smooth function Rn F−→ Rm is in fact a tuple F = 〈f1, . . . , fm〉 of smooth functions Rn fi−→ R.

Using the convention that ~x ∈ Rn are column vectors, the derivative Rn × Rn D[F ]−−−→ Rm is defined
as multiplying the Jacobian matrix of F at the first argument ~x , which is an m × n matrix
J(F )(~x), with the second argument ~y , seen as an n × 1 matrix:

D[F ](~x , ~y) := J(F )(~x)~y =
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When m = 1, for a smooth function Rn f−→ R, D[f ](~x , ~y) is precisely the directional derivative of f
at point ~x and along the vector ~y .



Cartesian Differential Categories - Linear Maps

An important class of maps in a CDC are the linear maps and maps which are linear in certain
arguments. Essentially, a map is linear in an argument if when differentiating with respect to that
argument (and keeping the other arguments constant), one gets back the starting map.

Definition

In a CDC X:

(i) A map A
f−→ B is linear if df (x)

dx
(a) · b = f (b)

(ii) A map A× B
f−→ C is linear in its second argument if f is linear with respect to the partial

derivative in its second argument, that is, df (x,y)
d(x,y)

(a, b) · (0, c) = f (a, c);

(iii) A map A× B
f−→ C is bilinear if df (x,y)

d〈x,y〉 (a, b) · (c, d) = f (a, d) + f (c, b)

Define Lin[X] to be the subcategory of linear maps of X.

One the axioms of the differential combinator tells us that D[f ] is linear in its second argument.

Example

In SMOOTH, being linear in the CDC sense is the same as being R-linear in the classical sense.

For example, Rn F−→ Rm is linear in the CDC sense if and only if it is R-linear in the classical sense:

F (s~x + t~y) = sF (~x) + tF (~y)

So Lin[SMOOTH] is the category of R-linear maps between the R-vector spaces Rn.



Linearly Closed Cartesian Differential Categories

Definition

A linearly closed Cartesian differential category is a CDC X such that:

For each pair of objects A and B, there is an object L(A,B), called the internal linear hom;

A bilinear map L(A,B)× A
ε`−→ B called the evaluation map;

For every map A× B
f−→ C which is linear in its second argument, there exists a unique map

A
λ`(f )−−−→ L(B,C), λ`(f )(a) = λ`y .f (a, y), called the linear curry of f , such that:

A× B
λ`(f )×1B //

f
))

L(B,C)× B

ε`

��
C

L(A,B) should be interpreted as the internal version of Lin[X](A,B), so the linear maps from A
to B. Being linearly closed does not imply that Lin[X] is Cartesian closed. However, if a CDC X
has a linear ⊗ representation:

Blute, R. F. and Cockett, J. R. B. and Seely, R. A. G., Cartesian Differential Storage Categories

then we conjecture that being linearly closed is equivalent to Lin[X] being monoidal closed – this
approach in the monoidal setting has been studied independently by Gallagher and MacAdam.



Jacobians

Definition

In a linearly closed CDC, the Jacobian of a map A
f−→ B is the map A

J(f )−−→ L(A,B) defined as

the linear curry of A× A
D[f ]−−→ B, that is, J(f ) := λ`(D[f ]) and so J(f )(a) = λ`y .

df (x)
dx

(a) · y .

Example

SMOOTH is a linearly closed CDC where the internal linear hom is L(Rn,Rm) = Rnm and the

evaluation map Rnm × Rn ε`−→ Rm is defined as:

ε` (~x , ~y) :=
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When m = 1, the evaluation map is given by the dot product: ε`(~x , ~y) = ~x · ~y =

n∑
i=1

xiyi .

For a smooth function Rn F=〈f1,...,fm〉−−−−−−−−→ Rm, taking J(F )(~x) = λ`(D[F ])(~x) results precisely in the
Jacobain matrix of F at ~x interpreted as column vector of size nm:

J(F )(~x) = [
∂f1

∂x1
(~x), . . . ,

∂f1

∂xn
(~x),

∂f2

∂x1
(~x), . . . ,

∂fm

∂xn
(~x)]T

which when post-composed in the evaluation map results in laying it out back into a m×n matrix.



Gradients and Transposes

Definition

A linearly closed CDC has a linear transpose if for every pair of objects A and B, there is a linear

map L(A,B)
τ−→ L(B,A) such that τ satisfies three axioms capturing the classical notion of

transpose (idempotent, swaps order of composition, preserves identities).

The gradient of a map A
f−→ B is the map A

∇(f )−−−→ L(B,A) defined as the transpose of its
Jacboian ∇(f ) = τ ◦ J(f ).

Proposition

A linearly closed CDC equipped with a linear transpose is precisely a linearly closed Cartesian
reverse differential category. The gradient is then linear curry of the reverse derivative:

f : A→ B

R[f ] : A× B → A ∇(f ) := λ`(R[f ])

Example

SMOOTH is a linearly closed CDC with a linear transpose (where τ is simply the matrix
transpose operation), or equivalently, SMOOTH is a linearly closed CRDC.



Cartesian Closed vs Linearly Closed

Proposition

A Cartesian closed differential category is linearly closed if and only if a canonical linear
idempotent splits.

[A,B]
` //

((

[A,B]

L(A,B)

66

This linear idempotent ` exists for any Cartesian closed differential category via linearization:

Cockett, R.; Lemay, J-S. P., Linearizing Combinators

Proposition

If X is a Cartesian closed differential category, then its linear idempotent completion LS[X]

Cockett, R.; Gallagher, J., Categorical models of the differential λ-calculus

is a linearly closed Cartesian closed differential category.



Some Final Thoughts

We conjecture that an equivalent alternative axiomatization of a linearly closed Cartesian
differential category can be done simply in terms of L(−,−), ε`, and J, where one would
define the differential combinator as D[−] = ε` ◦ (J(−)× 1)

We conjecture that an equivalent alternative axiomatization of a linearly closed Cartesian
reverse differential category can be done simply in terms ofL(−,−), ε`, ∇, and τ , where one
would define the reverse differential combinator as R[−] = ε` ◦ (∇(−)× 1).

It should also be possible to generalize other important notions from classical differential
calculus such as the divergence, the curl, the Laplacian, and the Hessian. For example, the
Hessian matrix is defined as the Jacobian matrix of the gradient, so:

A
H(f ):=J(∇(f ))−−−−−−−−−→ L (A,L(B,A))



That’s all folks!

HOPE YOU ENJOYED MY TALK!

THANKS FOR LISTENING!

MERCI!
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