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Cyber Ki�ens Growing Up

Last year, I sketched a categorical account of certain cybernetic systems,

based on the idea that such systems should perceive and act,
i.e., perform approximate Bayesian inference.

I showed that approximate inference problems collect into categories of statistical games.

But, that presentation had a number of problems — particularly:

unsatisfactory notions of ‘action’ and ‘dynamics’;

too much generality in the wrong places;

no good way to talk about interacting systems;

plus, some technical issues!

Since then, I’ve been trying to iron out these wrinkles ...
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This Talk

I was inspired by David Spivak’s advocacy of polynomial functors for interacting systems.

We could summarize what I’ve been doing as “trying to breathe life into polynomials”.

So today, I’ll give a progress report on that work. I will:

present a simplification of statistical games;

briefly re-introduce polynomial functors;

define a new category of dynamical systems (Markov processes) over polynomials;

sketch approximate and active inference doctrines,
the la�er via a new category of statistical games over polynomials;
extend active inference to systems with goals;
and describe how this can model homeostasis and morphogenesis.

But first: let me apologize for the terseness of the abstract I submi�ed!

You will get a much clearer version shortly...
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Statistical Games Bayesian Lenses

Recap: Bidirectional Structure of Bayesian Inference (1/2)

We work in a Markov category of stochastic
channels: inputs give uncertain outputs.

Given a ‘prediction’ channel c : X → P Y ,

the corresponding ‘update’ channel has a

‘state-dependent’ type c† : P X × Y → P X .

Such pairs of a forwards map with a

‘dependent’ backwards map are lenses.

Theorem: the Bayesian inversion of a composite

channel is the “lens composite” of its

components [1].

This seems to match (e.g.) what we see in the

brain (see right).

Figure: Bastos et al. [2]
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Statistical Games Bayesian Lenses

Recap: Bidirectional Structure of Bayesian Inference (2/2)

Such Bayesian lenses form a category BayesLens of morphisms between (pairs of) spaces.

They compose like this:

c

c†

X

A B

Y

X

d

d†
C

Z

Y ∼=

c

c†

X

A

d

d†
C

Z

c

This captures the structure of inverting a hierarchical or causal model.

(Example: brain’s visual predictions at cinema...)
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Statistical Games Inference in Context

Simpler Statistical Games for Approximate Inference (1/2)

However, given a stochastic channel c : X → P Y and a prior π : P X , computing the

inversion c†π : Y → P X is o�en computationally hard: we usually need to approximate it.

This gives us a lot of freedom. O�en, one approximation scheme might be ‘be�er’ than

another, and we should like to quantify this.

And, o�en, the fitness of our approximation depends on how it interacts with the world:

the prior we choose, and the dataset we have.

So the approximation is typically context-dependent and parameterized.

We can capture all this in a category of statistical games.
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Statistical Games Inference in Context

Simpler Statistical Games for Approximate Inference (2/2)

The objects of SGame are the objects (X ,A) of BayesLens.

Then a statistical game is a morphism (X ,A)→ (Y ,B) in SGame:

a lens (X ,A) 7→ (Y ,B) paired with a contextual loss function ctx

(
(X ,A), (Y ,B)

)
→ R.

ctx

(
(X ,A), (Y ,B)

)
is the set of contexts for lenses (X ,A) 7→ (Y ,B):

Everything needed to “close o�” the lens.

ctx

(
(X ,A), (Y ,B)

)
= BayesLens

(
(1, 1), (X ,A)

)
× BayesLens

(
(Y ,B), (1, 1)

)
That is: a prior π : DX on X and a continuation channel Y → DB.

Composition of statistical games is lens composition paired with the sum of the ‘local’ fitnesses.

Identities are identity lenses (which just pass on information) with 0 fitness.

And there is a monoidal product inherited from the underlying Markov category.
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Statistical Games Inference in Context

Free Energy Games

Definition
A (simple) free energy game is a simple statistical game (Z ,Z)→ (X ,X) for some space X
with loss function φ : ctx

(
(Z ,Z), (X ,X)

)
→ R given by

φ(π, k) = E
x∼k•c•π

[
E

z∼c′π(x)
[− log pc(x|z)] + DKL(c′π(x), π)

]
= E

z∼c′π•k•c•π

[
F(x)

]
where (c, c′) : (Z ,Z) 7→ (X ,X) constitutes the lens part of the game, where pc : X × Z → R+ is

a density function for c, and where F(x) is called the free energy.

Nota bene:

We have F(x) = DKL

[
c′π(x), c†π(x)

]
− log pc•π(x) ≥ DKL

[
c′π(x), c†π(x)

]
,

so free energy games are approximate Bayesian inference games.

And, in our examples, they are closed under composition.
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Polynomial Functors for Embodiment and Interaction Polynomial Interfaces

Polynomial Morphology (1/2)

Polynomials can represent interfaces;

their morphisms pa�erns of interconnection:

Z C

C Z

Y B

Y B

BZyYC ⊗ CyZ → ByY

But that’s not all!

Polynomials can describe much richer

kinds of interconnection:

Even systems that change their shape!

How does this work?
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Polynomial Functors for Embodiment and Interaction Polynomial Interfaces

Polynomial Morphology (2/2)

A general polynomial p looks like: AyX + ByY + CyZ + · · ·
“a sum of representable copresheaves”

So, that means:

∑
i:p(1) p[i]

For example: p(1) = A + B + C; p[i]i∈A = X , etc

So p :
∑

i:p(1) p[i]→ p(1) is a bundle over p(1)!

I like to think of each polynomial as a phenotype:

The base type p(1) is configurations or morphology;

Each p[i] is the type of immanent signals or ‘sensorium’.

Think eyelid, or “Markov blanket”!

Then poly. morphisms model interactions as on the le�!

A ‘forwards’ map on configurations, and

a ‘backwards’ map on sensoria.

And we can ‘nest’ polynomials:

systems within systems...

Now, let’s try to animate these gadgets.
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Polynomial Functors for Embodiment and Interaction Dynamical Systems on Polynomial Interfaces

Markov Processes and Generalized Coalgebras

Definition (Open Markov Process (Θ, ϑo, ϑu) on p with time T)

a state space Θ : E ; and an ‘output’ map ϑo : T×Θ→ p(1); and

an ‘update’ map ϑu :
∑

t:T
∑

s:S p[ϑo(t, s)]→ P S

such that, for any section σ of p, the closure ϑσ : T×Θ→ P S given by∑
t:T

Θ
ϑo(t)∗σ−−−−→

∑
t:T

∑
s:S

p[ϑo(t, s)]
ϑu−→ P Θ

induces an object in the functor category Cat
(
BT,K`(P)

)
.

These things:

form an indexed category MrkProcTP : PolyE → Cat;

correspond to pP-coalgebras when T = N, and regular Markov processes when p = y ;

... and satisfy various other nice results (for a di�erent talk!)
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Approximate and Active Inference Approximate Inference Doctrines

Approximate Inference Doctrines

We can use such indexed categories of dynamical systems over polynomials

to construct something like a dynamical analogue of our lenses:

Proposition (Hierarchical Bidirectional D-systems)
Suppose D : PolyE → Cat. There is a category HiBi(D):

Objects are pairs (X ,A) of objects in E ;

morphisms are functors D(XyA)→ D(YyB);

composition is just composition of functors.

And then we can use this as ‘dynamical semantics’ for approximate inference:

Definition (Approximate Inference Doctrine)
Let G be a subcategory of SGameK`(P). An approximate inference doctrine in G
is a lax monoidal functor from G to HiBi

(
MrkProcTP

)
|G .
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Approximate and Active Inference Approximate Inference Doctrines

The Laplace Doctrine, now well-typed (1/2)

And with these tools, we begin to have a satisfactory compositional formalism for Friston’s free

energy framework (amongst other approximate inference schemes):

Theorem (Laplace Doctrine)
Let G denote the subcategory of free energy games generated by channels with independent

Gaussian noise. Then the “Laplace approximation” induces an approximate inference doctrine in

G with time N, Laplace : G → HiBi
(
MrkProcNP

)
|G . (Illustration on next side!)

(Briefly: “Laplace” means, assume everything is Gaussian, with posteriors of small variance.)

And, of course, di�erent assumptions give di�erent doctrines!
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Approximate and Active Inference Approximate Inference Doctrines

The Laplace Doctrine, now well-typed (2/2)

This is the wiring diagram resulting from the Laplace doctrine, given a game (X ,X)→ (Y ,Y)

and a system emi�ing priors π on X :

ηπ

µρπ

ηγ
π

X

Y

µγ

εγΣ−1

γ

επ Σ−1

π

Y

But still, we don’t have good notions of action and interaction here!

16 / 30



Approximate and Active Inference Active Inference Doctrines

Internal Models and Polynomial Statistical Games

We can ‘index’ the category of statistical games by

polynomials: like a slice category.

That is, for each polynomial p, we obtain a category

of “statistical games over p”.

This way, we can model (inter)action:

Each object over p is an “internal model of

p-sensations”.

By sampling from the predicted configurations, we

get something like ‘action’.

(What more is action than a change in

configuration?)

We also get a recipe for describing the generative

model of a composite (‘multi-agent’) system, in

terms of the component systems’ models.
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Approximate and Active Inference Active Inference Doctrines

Polynomial Statistical Games, More Formally

Definition (Simple Statistical Games With Interface X : E)
Define category IntGameP(X):

Objects are simple statistical games with codomain X ; that is, points of∑
A:E SimpSGameK`(P)(A,X).

Morphisms (γ, ρ, φ)→ (δ, σ, χ) are deterministic functions f : A→ B—that is, points of

E(A,B)—such that γ = δ ◦ f .

Proposition
There is a polynomially indexed category of statistical games PSGameP : PolyE → Cat,
defined on objects p as IntGameP

(∑
i:p(1) p[i]

)
.

(The action on morphisms of polynomials and the resulting proof are slightly intricate...)

18 / 30



Approximate and Active Inference Active Inference Doctrines

Active Inference Doctrines (1/2)

To breathe life into these games, we define active inference doctrines.
Formally, these organize themselves into indexed functors:

−→

The resulting dynamical systems perceive their sensoria, and change their configurations in

action, to bring their beliefs into alignment with ‘reality’, and improve their chances of survival,

or ability to find abstractions, or their fulfilment, ... or whatever.
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Approximate and Active Inference Active Inference Doctrines

Active Inference Doctrines (2/2)

We can write this down more formally as follows:

Definition
An active inference doctrine is an indexed monoidal functor from

(a sub-indexed category of) PSGameP to MrkProcTP .

And then we have the following result:

Proposition
The Laplace approximate inference doctrine extends to an active inference doctrine.
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Polynomial Life Systems with Volition: Games with Goals

Systems with Volition

Recall that a system’s performance at a statistical game is contextual:

it depends on prior beliefs (inc. its model structure!), and on its environment.

To improve its performance a system can:

1 Update its beliefs (perception);

2 update its model structure or parameters (part of its beliefs);

(we will return to this later)

3 change its shape (a kind of action);

4 couple with part of the world, and change that shape (another kind of action).

By equipping it with ‘strong’ initial beliefs, we can give it preferences for particular world states.

And the system will a�empt to achieve those states: i.e., display volition.
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Polynomial Life Systems with Volition: Games with Goals

Games with Goals, Formally

Definition (Games with Goals on Interface X : E)
Define category IntGameP(X)∗:

Objects are dependent pairs in

∑
A:E 1/K`(P)× SimpSGameK`(P)(A,X).

Morphisms (π, (γ, ρ, φ))→ (π′, (δ, σ, χ)) are deterministic functions f : A→ B such that

γ = δ • f and π = π′ • f .

Proposition
There is an indexed category of games with goals PSGameP∗ : PolyE → Cat, defined on

polynomials p as IntGameP
(∑

i:p(1) p[i]
)
∗
.

Definition
An active inference doctrine with goals is an indexed monoidal functor from (a sub-indexed

category of) PSGameP∗ to MrkProcTP .
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Polynomial Life Two Examples

Homeostasis and Morphogenesis

We sketch a couple of basic examples: (Full workings to follow soon!)

Homeostasis
Suppose: system’s sensorium includes a key

parameter, such as the ambient temperature.

Suppose: by adjusting configuration, the

system can move around to sample the

parameter.

Suppose: the ‘prior’ encodes a high-precision

distribution centred on the acceptable range

of this parameter.

Then: by minimizing free energy, the system

will a�empt to configure itself to remain

within the acceptable parameter range.

Morphogenesis (very briefly...)

Suppose: multiple ‘homeostasis’

systems, each sensing some signalling

molecule.

Suppose: poly map encodes pa�ern of

signal molecule concentrations.

Suppose: ‘priors’ encode “target local

configurations”.

Then: free-energy minimization

induces systems to arrange themselves

to obtain global target pa�ern.
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Current Directions

Autopoiesis

An active inference doctrine assigns dynamical systems to statistical games.

O�en, it seems like we should be able to go the other way:

that is, take an open dynamical system to some “canonical game” that it seems to realize.

(Particularly when the dynamical system seems autopoietic!)

I expect this mapping to be adjoint to the doctrine, perhaps as in the triangle below:∫
PSGameP

∫
MrkProcTP

PolyE

Doctrine

CanonicalGame

Something like this should work for Ornstein-Uhlenbeck processes.

But I haven’t proved it yet.
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Current Directions

Nested Systems and Mutually Coinductive Types

.

.

.

F C

E B

J I

Each polynomial corresponds to a ‘bridge’ diagram J ← E → B→ I.

Our definition of PolyE corresponds to the case when J = I = 1.

We think of this category as considering all systems in the universe

together, on equal footing.

But systems are o�en ‘nested’ within each other:

consider bacteria in your gut microbiome; or

creatures on the Earth within the solar system.

In these cases, we should expect the ‘inner’ and ‘outer’ morphologies

to be compatible, which means considering squares, not just bridges.

We then get another indexed category, PolyE(−) : PolyE(1)→ Cat,
and this should in turn be (co)recursive, to model iterated nesting.

In turn, this gives a notion of “hierarchical internal model”.

But what is such a (‘mutually’) coinductive type, precisely?
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Current Directions

Connections with ‘Strathclyde’ Cybernetics
Semantics of Parameterization

At the heart of the MSP group’s account of

cybernetics are parameterized maps [3].

These crop up for me, too: for instance, in

learning to predict or navigate.

Indexing over polynomials similarly “adds a

dimension” to the algebra of interconnection.

But there’s also a di�erence: between

indefinitely extended processes, and “process

fragments” ...

Nested Systems and Parameters

The Para construction can also be iterated.

Is that shape the same as my “nested

polynomials”?

‘Playing’ Open (Economic) Games

Open games are like “fragments of a

Markov decision process”.

Active inference systems can

optimally solve such problems.

(up to a finite time horizon)

I expect an elegant connection

between Bayesian open games and

statistical games with goals.
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Current Directions

And More...

More approximate and active inference doctrines! In particular:

We can define statistical games over dynamical processes;

doctrines here should correspond to ‘filtering’.

Some of the hierarchical models here seem to demand iterated polynomial nesting...

Learning the parameters of the model is like learning the ‘context’ of a dependent type

theory, or the base of a slice topos.

How far can we push this? (I think, quite far!)

We haven’t made especial use of the functoriality of the polynomial indexing, yet.

Can we build compositional models of active multi-agent systems, like corporations?

What is the internal model of such a composite system? What are its goals?

Then, can we use any answers to these questions to study consensus?

From a ‘fuzzy’ or ‘Bayesian’ angle?

Can we apply cohomological tools?
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Current Directions
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