

Treewidth via Spined Categories

Zoltan A. Kocsis (CSIRO)

ACT 2021, Cambridge, UK 15 July 2021

joint work with **Benjamin Merlin Bumpus** (University of Glasgow)

Papers please

Z. A. K., Benjamin Merlin Bumpus: **Treewidth via Spined Categories** (this talk) arXiv:2105.05372

Benjamin Merlin Bumpus, Z. A. K.: Spined categories: generalizing tree-width beyond graphs (journal article, submitted)

arXiv:2104.01841

www.existence.property

What we did (summary)

Treewidth A numerical invariant defined on graphs. Uses: Robertson-Seymour graph minor theorem. Applications:

• **Courcelle's theorem**: every property of graphs definable in MSOL is linear time decidable on graphs of bounded treewidth.

Fruitful research activity: define analogues of treewidth...

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;

Fruitful research activity: define analogues of treewidth...

- ... for hypergraphs and digraphs;
- ... for temporal graphs (edge sets change over time);

Fruitful research activity: define analogues of treewidth...

- ... for hypergraphs and digraphs;
- ... for temporal graphs (edge sets change over time);
- ... and even fractional graphs.

Obtaining treewidth analogues for other structures: *useful* and *possible*.

¹its use: dixit Wittgenstein

Obtaining treewidth analogues for other structures: *useful* and *possible*.

But ad-hoc. We wanted:

- A categorial description capturing its meaning¹
- A uniform, categorial construction.

¹its use: dixit Wittgenstein

We define

- **Spined categories**: categories with some extra structure.
- Spined functors preserve this extra structure.
- Examples: **Grph**_m, **HGrph**_m, posets (**Nat**), etc.

Treewidth as Functor

We prove the following

Theorem Given a spined category C, either

- There are no spined functors $F: \mathcal{C} \to \mathbf{Nat}$; or
- there is a distinguished functor (to be characterized later) Δ_C : C → Nat.

Moreover,

- $\Delta_{\mathbf{Grph}_m}$ is treewidth,
- $\Delta_{\mathbf{HGrph}_m}$ is hypergraph treewidth,

and so on.

Treewidth, briefly

Beware! By graph, we mean a combinatorist's graph:

- Finite
- Irreflexive
- Undirected
- Without parallel edges

This clashes with the category theory convention. In particular, our category of graphs is not a quasitopos.²

 $^{^{2}}$ We can take some limits as if we were reflexive. You'll see.

- **Treewidth**: a number tw(G) describing each graph G.
- Captures how "tree-like" the *global* structure is.
- Trees are the graphs of treewidth 2. 3
- Lower treewidth \rightarrow more tree-like

³Cf. sets having h-level 2 in HoTT

Example: Tree-like graphs

Example: Tree-like graphs

Example: Tree-like graphs

Compare: Complete graph on 37 vertices (treewidth 37)

The starting point

Figure 1: $\operatorname{tw}(B+_P R) = \max\{\operatorname{tw}(B), \operatorname{tw}(R)\}\$

Suggestive identity:

 $\operatorname{tw}(B+_P R) = \max\{\operatorname{tw}(B), \operatorname{tw}(R)\}$

Suggestive identity:

$$\operatorname{tw}(B+_P R) = \max\{\operatorname{tw}(B), \operatorname{tw}(R)\}$$

Idea: tw as pushout-preserving functor $\operatorname{\mathbf{Grph}} \to \mathbb{N}_{<}$

Issue: Graph homomorphisms do not preserve treewidth.

There is a graph homomorphism $C_4 \to C_2$, but we **don't** have

 $\operatorname{tw}(C_4) \le \operatorname{tw}(C_2)$

Observation: Graph monomorphisms do preserve treewidth. If $G \hookrightarrow H$, then $tw(G) \le tw(H)$.

Naive solution: Consider the category \mathbf{Grph}_m that has

- Objects: simple graphs.
- Morphisms: monomorphisms of simple graphs.

and characterize tw as some kind of pushout-preserving functor

$$\mathrm{Grph}_m \to \mathbb{N}_{\leq 1}$$

Easy, right?!

The category \mathbf{Grph}_m lacks pushouts. Consider

where K_n is the complete graph on n vertices, i.e. K_1 is \bullet and K_2 is \bullet — \bullet .

- \mathbf{Grph}_m remembers something about the existence of pushouts in \mathbf{Grph}
- **Proxy pushouts:** the categorial ingredient, axiomatizes what \mathbf{Grph}_m remembers.

- \mathbf{Grph}_m remembers something about the existence of pushouts in \mathbf{Grph}
- **Proxy pushouts:** the categorial ingredient, axiomatizes what \mathbf{Grph}_m remembers.
- **Spine:** the combinatorial ingredient, axiomatizes "complete" objects Ω_n : think "complete graphs".

Definition

A spined category consists of a category C equipped with the following additional structure:

• a sequence $\Omega : \mathbb{N} \to \operatorname{ob} \mathcal{C}$ called the *spine* of \mathcal{C} ,

Definition

A spined category consists of a category C equipped with the following additional structure:

- a sequence $\Omega : \mathbb{N} \to \operatorname{ob} \mathcal{C}$ called the *spine* of \mathcal{C} ,
- an operation \mathfrak{P} (called the *proxy pushout*) that extends every diagram of the form $G \xleftarrow{g} \Omega_n \xrightarrow{h} H$ in \mathcal{C}

Definition

A spined category consists of a category C equipped with the following additional structure:

- a sequence $\Omega : \mathbb{N} \to \operatorname{ob} \mathcal{C}$ called the *spine* of \mathcal{C} ,
- an operation \mathfrak{P} (called the *proxy pushout*) that extends every diagram of the form $G \xleftarrow{g} \Omega_n \xrightarrow{h} H$ in \mathcal{C}

to a distinguished commutative square

$$\begin{array}{ccc} \Omega_n & & \xrightarrow{g} & G \\ \downarrow^h & & \downarrow^{\mathfrak{P}(g,h)_g} \\ H & & \xrightarrow{\mathfrak{P}(g,h)_h} \mathfrak{P}(g,h) \end{array}$$

so that the following two conditions hold:

Definition (cont.)

... so that the following two conditions hold:

SC1: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$.

Definition (cont.)

... so that the following two conditions hold:

SC1: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$. **SC2**: Given any diagram of the form

Definition (cont.) ... so that the following two conditions hold: **SC1**: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$. **SC2**: Given any diagram of the form

 $\exists ! (g', h') : \mathfrak{P}(g, h) \to \mathfrak{P}(g' \circ g, h' \circ h) \text{ making it commute.}$

The obvious notion of morphism between spined categories.

Definition

Consider spined categories $(\mathcal{C}, \Omega^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}})$ and $(\mathcal{D}, \Omega^{\mathcal{D}}, \mathfrak{P}^{\mathcal{D}})$. We call a functor $F : \mathcal{C} \to \mathcal{D}$ a *spined functor* if it

- 1. preserves the spine, i.e. $F \circ \Omega^{\mathcal{C}} = \Omega^{\mathcal{D}}$, and
- 2. preserves proxy pushouts, i.e. the *F*-image of every proxy pushout square in C is a proxy pushout square in D.

One can state the latter equationally, by demanding that the equalities $F[\mathfrak{P}^{\mathcal{C}}(g,h)] = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)$, $F\mathfrak{P}^{\mathcal{C}}(g,h)_g = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)_{Fg}$ and $F\mathfrak{P}^{\mathcal{C}}(g,h)_h = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)_{Fh}$ all hold. The poset \mathbb{N}_{\leq} regarded as a category, with

Spine: $\Omega_n = n$ Proxy pushouts: pushouts (i.e. suprema)

We denote this spined category **Nat**. It will play an important role as the codomain of our "abstract treewidth"!

Examples

The category \mathbf{Grph}_m (simple graphs and monomorphisms), with

Spine: $\Omega_n = K_n$, the complete graph on *n* vertices **Proxy pushouts**: the proxy pushout

$$\begin{array}{ccc} \Omega_n & & \xrightarrow{g} & G \\ \downarrow^h & & \downarrow^{\mathfrak{P}(g,h)_g} \\ H & \xrightarrow{\mathfrak{P}(g,h)_h} \mathfrak{P}(g,h) \end{array}$$

is just the pushout square in **Grph**. Similarly for \mathbf{HGrph}_m (hypergraphs and monomorphisms).

Other Examples

- The category \mathbf{FinSet}_m (sets and monomorphisms) with Ω_n denoting the *n*-element set, and proxy pushouts as in **Set**.
- The poset \mathbb{N}_{div} , with least common multiples as proxy pushouts,

$$\Omega_n = \prod_{p \le n} p^n$$

where p ranges over the primes.

• Many other combinatorial examples...

Treewidth as Functor

The map that sends each graph to the size of its largest complete subgraph is a spined functor $\omega : \mathbf{Grph}_m \to \mathbf{Nat}$. From here on we focus on spined categories \mathcal{C} such that there exists at least one $s : \mathcal{C} \to \mathbf{Nat}$. We define a distinguished S-functor $\Delta_{\mathcal{C}} : \mathcal{C} \to \mathbf{Nat}$ on each category \mathcal{C} with some $s : \mathcal{C} \to \mathbf{Nat}$. This will...

- ... be canonical, and constructed uniformly.
- ... satisfy a *maximality* property.
- ... coincide with treewidth when $\mathcal{C} = \mathbf{Grph}_m$.

Pseudo-chordal Objects

Definition

Take an object $X \in \text{ob } \mathcal{C}$. We call X pseudo-chordal if for any two spined functors $F, G : \mathcal{C} \to \mathbf{Nat}$, we have

$$F[X] = G[X].$$

I.e. if all treewidth-like functors agree on X.

Definition

Take an object $X \in \text{ob } \mathcal{C}$. We call X pseudo-chordal if for any two spined functors $F, G : \mathcal{C} \to \mathbf{Nat}$, we have

F[X] = G[X].

I.e. if all treewidth-like functors agree on X.

We "know the treewidth" of pseudo-chordal objects X:

$$\Delta_{\mathcal{C}}[X] = s[X].$$

We can use pseudo-chordal objects as "test objects" to define $\Delta_{\mathcal{C}}$ on all other objects.

Definition We define the triangulation functor $\Delta_{\mathcal{C}} : \mathcal{C} \to \mathbf{Nat}$ via

 $\Delta_{\mathcal{C}}[X] = \inf \left\{ \Delta_{\mathcal{C}}[H] \mid \exists f \colon X \to H \text{ s.t. } H \text{ is pseudo-chordal} \right\}$

for each $X \in \text{ob } \mathcal{C}$.

Theorem The triangulation functor $\Delta_{\mathcal{C}} : \mathcal{C} \to \mathbf{Nat}$ is

- a functor $\mathcal{C} \to \mathbf{Nat}$.
- a spined functor on \mathcal{C} .
- the object-wise maximal spined functor $\mathcal{C} \to \mathbf{Nat}$.

Main Theorem: Proof

Just stare at the following diagram ;)

Theorem

- 1. $\Delta_{\mathbf{Grph}_m}$ coincides with treewidth.
- 2. $\Delta_{\mathbf{HGrph}_m}$ coincides with hypergraph treewidth.
- 3. A similar category of modular graphs yields modular treewidth.

Computing $\Delta_{\mathcal{C}}$

Consider a spined category $(\mathcal{C}, \Omega, \mathfrak{P})$ such that

- 1. All Hom-sets $\mathcal{C}(X, Y)$ are finite and enumerable;
- 2. Equality of morphisms is decidable and \circ is computable;
- 3. Proxy pushouts $\mathfrak{P}(g, h)$ are computable;
- 4. C has finitely many objects over Ω_n (up to iso).

There is a uniform (but slooow) algorithm that computes $\Delta_{\mathcal{C}}$ that works in any such category \mathcal{C} .

https://github.com/zaklogician/act2021-code

Conclusion

Payoff

We get "abstract tree decompositions": we can write algorithms for objects of bounded $\Delta_{\mathcal{C}}$ just like we do for graphs of bounded treewidth.

Future work

- Work out more specific examples.
- Dualize! "subgraphs :: treewidth" as "colorings :: ???".
- Relation with Baez and Courser's Structured Cospans?
- Aspiration: a categorial Courcelle's Theorem

Thanks! Questions?

Appendix: Why not...

- Adhesive categories? What goes wrong? Posets are never adhesive, so we would not have a codomain for Δ.
- Algebraic and order-theoretic examples? Seemingly difficult. By dualizing, we might have something for finitely presented groups, but details have to be worked out.
- Algebraic issues? Pushouts arise from free products in algebraic theories. These tend to be infinite. But when not (e.g. bounded join-semilattices), you need to choose a spine carefully to avoid measurability issues.
- Spatial, topological examples? I'm very hopeful (but note that finite topology is order theory).

Appendix: Glossary

- Robertson-Seymour theorem: the "set" of undirected graphs, when partially ordered by the graph minor relation, is well-quasi-ordered. (E.g. Wagner's forbidden minors, K_5 and $K_{3,3}$ as obstructions to planarity!)
- **Kruskal's tree theorem**: Robertson-Seymour for trees. Much easier to prove.
- **Courcelle's theorem**: Every graph property definable in MSO is decidable in linear time on graphs of bounded treewidth.

Treewidth has many equivalent definitions.

- Most useful: via tree decompositions.
- Most relevant: via chordal completion.
- The latter is easier to understand.

Appendix: Treewidth Definition 2

Definition

A graph G is *chordal* if every cycle $C \subseteq G$ (of length > 3) has a *chord*: an edge of G connecting two non-consecutive vertices of C

Figure 2: The graph on the left is not chordal. The graph on the right is chordal.

Definition

Given $G \hookrightarrow H$ such that H is chordal, we say that H is a *chordal completion* of G. The **treewidth** of G is the size of the largest complete graph that occurs (as a subgraph) in every chordal completion of G.

In combinatorics, one usually adds -1 here.

Appendix: Treewidth Example

Appendix: Treewidth as Functor: Proof*

Theorem $\Delta_{\operatorname{Grph}_m}$ coincides with treewidth.

Proof.

- 1. "Size of largest complete subgraph" is an S-functor $\omega : \operatorname{\mathbf{Grph}}_m \to \operatorname{\mathbf{Nat}}.$
- 2. If X has a pseudo-chordal completion Y, then it also has a chordal completion Y' with $\omega(Y) = \omega(Y')$ (just take the chordal completion of Y).
- 3. tw(X) is the size of the largest complete subgraph that occurs in every chordal completion of X, so we're done.

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!
- Using computational assumptions, we can construct the *smallest set* with these two properties inductively!

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!
- Using computational assumptions, we can construct the *smallest set* with these two properties inductively!
- This yields a (slooow) algorithm to compute $\Delta_{\mathcal{C}}$.

Appendix: Measurability Proofs*

- Spined categories interact nicely via spined functors.
- E.g. spined functors reflect measurability.
- HGrph_m is measurable via the Gaifman functor
 G: HGrph_m → Grph_m + existence of Δ_{Grph_m}
- **FinSet**_m is not: via the functor that forgets edges $V: \operatorname{\mathbf{Grph}}_m \to \operatorname{\mathbf{FinSet}}_m + \operatorname{maximality} \text{ of } \Delta_{\operatorname{\mathbf{Grph}}_m}$

Appendix: Measurability Proofs*

- Spined categories interact nicely via spined functors.
- If \mathcal{C} is measurable, and there is $F: \mathcal{D} \to \mathcal{C}$, then \mathcal{D} is measurable.
- \mathbf{HGrph}_m is measurable: the Gaifman functor $\mathbf{HGrph}_m \to \mathbf{Grph}_m$ that sends each hypergraph to its graph skeleton is spined.
- **FinSet**_m is not measurable: the functor that forgets edges, $\operatorname{\mathbf{Grph}}_m \to \operatorname{\mathbf{FinSet}}_m$ is spined. But generally $\operatorname{tw}(X) \geq |V(X)|$.

Consider the category which has

Objects: finite posets **Morphisms**: order embeddings

equipped with the usual pushout construction.

Is there a spine which turns this into a measurable spined category?