
Preliminary Report. Final version to appear in:
ACT 2021

© Jérémie Koenig
This work is licensed under the
Creative Commons Attribution License.

Grounding Game Semantics in Categorical Algebra

Jérémie Koenig
Yale University, USA

jeremie.koenig@yale.edu

I present a formal connection between algebraic effects and game semantics, two important lines of
work in programming languages semantics with applications in compositional software verification.

Specifically, the algebraic signature enumerating the possible side-effects of a computation can
be read as a game, and strategies for this game constitute the free algebra for the signature in a cate-
gory of complete partial orders (cpos). Hence, strategies provide a convenient model of computations
with uninterpreted side-effects. In particular, the operational flavor of game semantics carries over
to the algebraic context, in the form of the coincidence between the initial algebras and the terminal
coalgebras of cpo endofunctors.

Conversely, the algebraic point of view sheds new light on the strategy constructions underlying
game semantics. Strategy models can be reformulated as ideal completions of partial strategy trees
(free dcpos on the term algebra). Extending the framework to multi-sorted signatures makes this
construction available for a large class of games.

1 Introduction

Writing bug-free software is notoriously hard. Current practice encourages comprehensive testing, but
while testing can reveal bugs it can never completely guarantee their absence. Therefore, for critical
systems, verification has become the gold standard: the desired behavior is described as a mathematical
specification, against which the implemented system is formally proven correct [41].

Over the past decade, researchers have been able to apply this methodology to larger and larger
systems: there are now verified compilers [33, 44, 31], operating system kernels [27, 22, 23], and even
verified processor designs [12, 18]. As a result, the construction of large-scale, heterogeneous computer
systems which are fully verified is now within reach [13]. A system of this kind would be described
end-to-end by a mathematical model, and certified correct by a computer-checked proof, providing a
strong guarantee that a given combination of hardware and software components behaves as expected.

Unfortunately, composing certified components into certified systems is difficult. For verification to
be tractable, the models and techniques used must often be tailored to the component at hand. As a result,
given two certified components developed independently, it is often challenging to interface their proofs
of correctness to construct a larger proof encompassing them both. To facilitate this process, a key task
will be to establish a hierarchy of common models. Using this hierarchy, individual certified components
could continue to use specialized models, but these models could then be embedded into more general
ones, where components and proofs of different kinds would be made interoperable.

Category theory is an important tool for this task. It can help us characterize existing models and
compare them in a common framework. As a systematic study of compositional structures, it can then
guide the design of more general models capable of describing heterogeneous systems. This paper
proposes to use this methodology to explore connections between two related but distinct lines of work:

• Algebraic effects [39, 40] offer a computational reading of basic concepts in categorical algebra
for the purpose of modeling, combining, and reasoning about side-effects in computations. They

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Grounding Game Semantics in Categorical Algebra

are a principled solution grounded in well-established mathematics, and have prompted novel and
promising approaches to programming language design.

• Game semantics [2, 7] describe interfaces of program components as games played between a
component and its environment, characterizing the component’s behavior as a strategy in this
game. This approach has been used to give compositional semantics to existing language features
which had previously resisted a satisfactory treatment.

The theory of algebraic effects is outlined in section 2. After introducing game semantics, section 3 uses
the associated techniques to construct a strategy model of uninterpreted algebraic effects. This model can
be characterized as an initial algebra in a particular category of complete partial orders, and reformulated
as a completion of the term algebra. Section 4 proposes to extend this construction to a larger class of
games by considering multi-sorted effect signatures.

I will use the notations 1 := {∗} and 2 := {tt,ff}. The set of finite sequences over an alphabet Σ is
written Σ∗, with ε as the empty sequence and s · t as the concatenation of the sequences s and t. With that
said, since the mathematics presented here are ultimately intended to be mechanized in a proof assistant,
I will often prefer the use of inductive grammars to that of sets of sequences.

2 Models of computational side-effects

Modeling the side-effects of computer programs is a long-standing research topic in programming lan-
guage semantics. I begin this paper by summarizing the underlying issues and present the approach
known as algebraic effects [39].

2.1 Monadic effects

Programs which perform pure calculations are straightforward to interpret mathematically. For example,

abs(x) := if x > 0 then return x else return − x (1)

can be characterized using the function f : R→R which maps x to |x|. By contrast, consider the program

greeting(∗) := (if readbit then print “Hi” else print “Hello”) ; stop (2)

which reads a single bit of input, outputs “Hi” or “Hello” depending on the value of that bit, then termi-
nates without producing a value. The side-effects performed by the operations readbit, print and stop are
more difficult to model. Certainly, (2) cannot be described as a function g : 1→∅.

The traditional way to address this issue is to capture the available side-effects in a monad 〈T,η ,µ〉
[37]. Then T X represents computations with a result in X which may also perform side-effects. The
monad’s unit η : X → T X corresponds to return, a pure computation which terminates immediately.
The multiplication µ : T T X → T X first performs the effects of the outer computation, then those of the
computation it evaluates to. This allows us to compose the computations f : A→ T B and g : B→ TC
sequentially (;) by using their Kleisli composition µ ◦T g◦ f .

Example 1. To assign a meaning to the program (2), we can use the following monad in Set:

T X := (Σ∗×X⊥)2 η(x) := b 7→ (ε,x) µ
(
i 7→

(
si, j 7→ (s′i j,xi j)

))
:= b 7→

(
sb · s′bb, xbb

)

Jérémie Koenig 3

An element of T X is a function which takes as input the bit to be read by readbit. In addition to the
computation’s result, which can be ⊥ as well as a result in X, the function produces a sequence of
characters from a fixed alphabet Σ. The operations readbit, print and stop can be interpreted as:

readbit ∈ T2 print : Σ∗→ T1 stop ∈ T∅
readbit := b 7→ (ε,b) print(s) := b 7→ (s,∗) stop := b 7→ (ε,⊥)

Then, the program (2) can be characterized using the function g : 1→ T∅ defined by:

g(∗) := b 7→

{
(“Hi”,⊥) if b = tt

(“Hello”,⊥) if b = ff

2.2 Algebraic effects

A long-standing issue with the monadic approach to computational side-effects is that in general, monads
do not compose. This makes it difficult to combine programs which use different kinds of side-effects.
This can be addressed by restricting our attention to monads describing algebraic effects.

Computations with side-effects are then seen as terms in an algebra. Function symbols correspond to
the available effects. Their arities correspond to the number of possible outcomes of the effect, and each
argument specifies how the computation will continue should the corresponding outcome occur.
Example 2. To interpret our running example, the algebraic signature must contain the function symbols
readbit : 2, print[s] : 1 and stop : 0. The behavior of the program (2) can then be represented as the term:

readbit
(
print[“Hi”](stop), print[“Hello”](stop)

)
and visualized as the tree:

readbit

print[“Hi”]

stop

print[“Hello”]

stop

Note that print[s] corresponds to a family of operations indexed by a parameter s ∈ Σ∗.

A major advantage of this approach is that the basic framework of universal algebra can immediately
be brought to bear. For example, equational theories including statements such as:

print[s](print[s′](x)) = print[s · s′](x)

can be used to characterize the behavior of the different effects and their possible interactions. Algebraic
theories can be combined in various ways [26], making possible a compositional treatment of effects.
Below, I present a simple version of the approach, starting with the following notion of effect signature.
Definition 3. An effect signature is a set E of function symbols together with a mapping ar : E → Set
which assigns to each function symbol m ∈ E an arity set ar(m). I will use the notation

E = {m1 : N1, m2 : N2, . . .}

where Ni = ar(mi) is the arity set assigned to the function symbol mi.

The use of arity sets allow us to encode effects such as readnat : N which have an infinite number of
possible outcomes. In this case, the argument tuples will be families indexed by N and the corresponding
terms will be written as readnat(xn)n∈N.

4 Grounding Game Semantics in Categorical Algebra

2.3 Initial algebras

To give a categorical account of the algebras generated by an effect signature E, we start by interpreting
the signature as an endofunctor on Set.

Definition 4. An effect signature E defines an endofunctor E : Set→ Set of the same name, as:

EX := ∑
m∈E

∏
n∈ar(m)

X

The elements of EX are terms of depth one with variables in X . This is emphasized by the following
notation (I use underlining to distinguish term constructors from the underlying elements of E):

t ∈ EX ::= m〈xn〉n∈ar(m) (m ∈ E, x ∈ X)

Terms of a fixed depth k can be obtained by iterating the endofunctor as EkX . More generally, the set of
all finite terms over the signature can be defined as follows.

Definition 5. Finite terms over an effect signature E with variables in X are generated by the grammar:

t ∈ E∗X ::= x | m(tn)n∈ar(m) (m ∈ E, x ∈ X)

Note the use of angle brackets 〈−〉 for simple applications vs. parentheses (−) for recursive terms.
Interpretations of the signature E in a carrier set A are algebras α : EA→ A for the endofunctor E.

They can be decomposed into the cotuple α = [αm]m∈E where αm : Aar(m)→ A. Algebras for E constitute
a category SetE where the morphisms of type 〈A,α〉 → 〈B,β 〉 are the functions f : A→ B satisfying:

EA A

EB B

α

E f f

β

f ◦α = β ◦E f

It is well-known [42] that the forgetful “carrier set” functor of type SetE → Set has a left adjoint. This
adjoint maps a set X to the term algebra cE

X : E(E∗X)→ E∗X . Concretely, cE
X = [cm

X]m∈E constructs terms
of the form m(tn)n∈ar(m), whereas the adjunction’s unit ηE

X : X → E∗X embeds the variables:

cE
X
(
m〈tn〉n∈ar(m)

)
:= m(tn)n∈ar(m) η

E
X (x) := x

The adjuction’s counit εE
α : 〈E∗A,cE

A〉 → 〈A,α〉 evaluates terms under their interpretation α : EA→ A:

ε
E
α

(
m(tn)n∈ar(m)

)
:= α

(
m〈εE

α (tn)〉n∈ar(m)

)
ε

E
α (a) := a

The monad 〈E∗,ηE ,µE〉 arising from this adjunction is called the free monad associated with E, and it
establishes a connection with the approach described in subsection 2.1.

The preservation of colimits by left adjoints means that the initial object in the category SetE is given
by the algebra µE = 〈E∗∅, cE

∅〉. Conversely, E∗X can be characterized as the initial algebra

[cE
X ,η

E
X] : E(E∗X)+X → E∗X

Jérémie Koenig 5

for a different endofunctor Y 7→ EY +X . Given an algebra [α,ρ] : EA+X → A, which provides an
interpretation αm : Aar(m) → A for each function symbol m ∈ E, and an assignment ρ : X → A of the
variables of X , there is a unique algebra homomorphism φα,ρ :

〈
E∗X , [cE

X ,η
E
X]
〉
→
〈
A, [α,ρ]

〉
:

E(E∗X) E∗X X

EA A X

cE
X

Eφα,ρ ! φα,ρ

ηE
X

α ρ

Note that φα,ρ = εα ◦E∗ρ and conversely εα = φα,idA .
This universal property provides a foundation for effect handlers [40], a programming language

construction which allows a computation to be transformed by reinterpreting its effects and outcome,
generalizing the well-established use of exception handlers. Using a different kind F∗Y of computations
as the target set, a handler h : E∗X → F∗Y can be specified using the following data:

• a mapping ρh : X → F∗Y which provides a computation ρh(x) ∈ F∗Y meant to be executed when
the original computation concludes with a result x ∈ X ;

• an interpretation αm
h : (F∗Y)ar(m)→ F∗Y for each m ∈ E providing a computation αm

h (kn)n∈ar(m)

to be executed when the original computation triggers the effect m.

Each argument kn ∈ F∗Y of αh corresponds the (recursively tranformed) behavior of the original com-
putation when it is resumed by the outcome n ∈ ar(m). We are free to use several of these continuations,
each one potentially multiple times, to assign an interpretation to the effect. This flexibility allows han-
dlers to express a great variety of control flow operators found in modern programming languages.

2.4 Final coalgebras

The free monad E∗ over an effect signature E allows us to represent finite computations with side-effects
in E but does not account for infinite computations. By considering the coalgebras for Y 7→ EY +X
instead of algebras, we can construct an alternative monad E∞ which does not exhibit the same limitation.
Coalgebras are ubiquitous in computer science, where they appear in the guise of automata and transition
systems. Their use in the context of algebraic effects therefore presents the additional advantage of
establishing a connection with the associated operational style of semantics.

Concretely, a coalgebra for the endofunctor Y 7→ EY +X equips a set of states Q with a transition
function δ : Q→ EQ+X describing what happens when the computation is in a given state q ∈ Q:

• if δ (q) = m〈q′n〉n∈ar(n), the computation triggers the effect m ∈ E, and continues in state q′n when
it is resumed by the outcome n ∈ ar(m);

• if δ (q) = x, the computation terminates with the result x ∈ X .

We define 〈E∞X , dE
X 〉 := νY .EY +X as the final such coalgebra, which satisfies the universal property:

Q EQ+X

E∞X E(E∞X)+X

δ

! ψδ Eψδ+idX

dE
X

An applicable construction of terminal coalgebras can be found in [30].

6 Grounding Game Semantics in Categorical Algebra

The action of E∞ on a function f : A→ B can be defined as E∞ f := ψ(id+ f)◦dE
A

; the underlying
coalgebra (idE(E∞A)+ f) ◦ dE

A : E∞A→ E(E∞A)+B behaves like dE
A but applies f to any result x ∈ A.

The monad’s unit η̄E
X : X→E∞X can be defined as η̄E

X :=ψι2 where the transition system ι2 : X→EX+X
immediately terminates, using its state as the outcome. Defining the multiplication µ̄E

X : E∞E∞X → E∞X
involves a coalgebra with states in E∞E∞X +E∞X : when states of the outer computation in E∞E∞X
produce a result in E∞X , we use this result as the new state and switch to executing the inner computation.

This approach has been used to great effect in interaction trees [29], a data structure designed along
these principles, and formalized using coinductive types in the Coq proof assistant. A comprehensive
library provides proof principles and categorical combinators for interactions trees, and they are used in
the context of the DeepSpec project [13] to interface disparate certified components.

Nevertheless, there are limitations to this approach. In particular, infinite computations often exhibit
silently divergent behaviors (infinite loops). Modeling these behaviors requires the introduction of a null
effect τ : 1 in the signature E, which coalgebras can then use to delay any interaction. While this is
feasible, this means the elements of E∞X must be considered up to τ , in other words in the context of
an algebraic theory including the equation τ(x) = x. This requires the use of sophisticated simulation
techniques to take into account the distinction between finite iterations (τ∗) and silent divergence (τω).

Less constructively, we can model silent divergence as its own effect ⊥ : ∅. We will see in the next
section that game semantics can be read as a principled treatment of this approach, which reestablishes a
connection with algebras and denotational semantics.

3 Strategies for uninterpreted effects

The theory of algebraic effects has a limited scope: it is intended to be used in conjunction with existing
approaches to programming language semantics to facilitate the treatment of computational side-effects.
By contrast, game semantics is its own approach to denotational semantics. Game models often feature
rich, high-order compositional structures, reflecting the languages they are designed to interpret, and the
origins of the technique in the semantics of linear logic. On the other hand, the principles underlying
their construction are somewhat more hazy and huge variety of approaches have been proposed.

Nevertheless, I begin this section by attempting to give a high-level account of what could be dubbed
the classical approach, in line with [15, 4, 5, 25]. By reading algebraic signatures as simple games,
I then deploy some of the techniques used in game semantics to construct a particularly pleasant model
of algebraic effects. This model can be characterized by specializing the theory of algebraic effects to the
category DCPO⊥! of directed-complete pointed partial orders and strict Scott-continuous functions [1].
Notably, the reconciliation operated by game semantics between denotational and operational semantics
finds a formal expression in the coincidence between the initial algebras and terminal coalgebras of
endofunctors in DCPO⊥!.

3.1 Games and strategies

The games used in game semantics involve two players: the proponent P and opponent O. The player
P represents the system being modeled, while O represents its environment. The games we will consider
are sequential and alternating: the opponent opens the game by playing first, after which the two players
contribute every other move.

Traditionally, a game G is specified by a set of moves MG = MO
G]MP

G partitioned into opponent and
proponent moves. Then plays of the game G are finite sequences of the form m1 m2 m3 m4 · · · , where

Jérémie Koenig 7

m1,m3, . . . ∈ MO are opponent moves and m2,m4, . . . ∈ MP are proponent moves. The set PG of valid
plays of G is often restricted further, to account for the additional structure of the particular game model
at hand. In any case, the objects of interest are then the strategies for P, which can be modeled as prefix-
closed sets of plays σ ⊆ PG which prescribe at most one proponent action in any particular situation:

∀s ∈ Podd
G · ∀m,m′ ∈MP · sm, sm′ ∈ σ ⇒ m = m′ . (3)

Although plays are finite, infinite behaviors can be modeled as prefix-closed sets of finite approximations.
Categories of games and strategies can then be constructed. The objects are games. The morphisms

are strategies σ : A→ B which simultaneously play the game A as the opponent O and the game B as the
proponent P, starting with an opening move from the environment in B. Game semantics is related to
linear logic [15], and categories of games and strategies often come with a rich structure, for example:

• the game A & B is played as A or B at the discretion of the opponent,

• in the game A⊗B, the games A and B are played side by side,

• the game !A allows multiple copies of A to be played at the discretion of the opponent, and

• the game A⊥ reverses the roles of O and P.
There are infinite variations on this basic setup, which have been used to model imperative pro-

gramming [6], references [3], advanced control structures [32], nondeterminism [24, 21, 43, 38, 17, 28],
concurrency [19, 20], etc. Another line of research explores more fundamental variations on construc-
tions of game and strategies [8, 36, 34, 35], attempting to provide simpler models of advanced features
and to ground game semantics in a more systematic approach.

3.2 Strategies for effect signatures

Effect signatures can be read as particularly simple games [28]. Under this interpretation, a computation
represented as a term in E∗X proceeds in the following way:

• the computation chooses a function symbol m ∈ E,

• the environment chooses an argument n ∈ ar(m).
This process is iterated until eventually, the computation chooses a variable x ∈ X rather than a function
symbol, terminating the interaction. In other words, a term t ∈ E∗X can be interpreted as a strategy for a
simple game derived from E and X . We can exploit this analogy to build a model of computations with
side-effects which mimics the construction of strategies in game semantics.
Definition 6 (Costrategies over effect signatures). The coplays over an effect signature E with results in
a set X are generated by the grammar:

s ∈ P̄E(X) ::= x | m | mns (x ∈ X , m ∈ E, n ∈ ar(m))

The set P̄E(X) is ordered by a prefix relationv ⊆ P̄E(A)×P̄E(A), which is the smallest relation satisfying:

xv x mv m mv mnt sv t ⇒ mnsv mnt

In addition, the coherence relation ¨⊆ P̄E(X)× P̄E(X) is the smallest relation satisfying:

x ¨ x m ¨ m m ¨ mns (n1 = n2⇒ s1 ¨ s2) ⇒ mn1s1 ¨ mn2s2

Then a costrategy over the effect signature E with results in X is a downward-closed set σ ⊆ P̄E(X) of
pairwise coherent coplays. I will write S̄E(X) for the set of such costrategies.

8 Grounding Game Semantics in Categorical Algebra

Note that by contrast with the usual convention, the first move is played by the system rather than
the environment, hence my use of the terminology coplays and costrategies. Moreover, formulating the
condition (3) by using a coherence relation is slightly non-traditional though not without precedent [16].
Apart from these details, Definition 6 is fairly typical of the game semantics approach.

Switching back to the algebraic point of view, we can interpret the terms of E∗X into S̄E(X) by
defining an algebra [α,ρ] : ES̄E(X)+X → S̄E(X) as follows:

α
(
m〈σn〉n∈ar(m)

)
:= {mns | n ∈ ar(m),s ∈ σn} ρ(x) := {x}

The resulting homomorphism φα,ρ : E∗X → S̄E(X) is an embedding. However, S̄E contains many more
behaviors, including the undefined or divergent behavior ∅ as well as infinite behaviors, represented as
their sets of finite prefixes. In fact,

Proposition 7. 〈S̄E ,⊆〉 is a pointed directed-complete partial order.

Proof. The empty set is trivially a costrategy. For a directed set D of costrategies, their union
⋃

D is again
a costrategy. Indeed, since D is directed, any two plays s1 ∈ σ1 ∈ D and s2 ∈ σ2 ∈ D must be coherent:
there exists a strategy σ ′ ∈ D which includes both σ1 and σ2, hence contains both s1 and s2.

This invites us to give a characterization for the structure of S̄E(X) similar to that of E∗X , by working
in the category DCPO⊥! of pointed dcpos and strict Scott-continuous functions.

3.3 Complete partial orders

Directed-complete partial orders (dcpo for short) are fundamental to denotational semantics of program-
ming languages. Before proceeding further, I summarize a few relevant properties of the category of
pointed dcpos and strict Scott-continuous functions.

Definition 8. A directed-complete partial order 〈A,v〉 is a partial order with all directed suprema: any
directed subset D⊆ A has a least upper bound t↑D ∈ A, where directed means that D is non-empty and
that any two x,y ∈ D have an upper bound z ∈ D. A pointed dcpo has a least element ⊥.

A strict Scott-continuous map f : 〈A,v〉 → 〈B,≤〉 between pointed dcpos is a function between the
underlying sets which preserves the least element ⊥ and all directed suprema. The category of pointed
dcpos and strict Scott-continous maps is named DCPO⊥!.

The category DCPO⊥! is complete and cocomplete, as well as symmetric monoidal closed with
respect to the smash product. The cartesian product ∏i∈I〈Ai,vi〉 is as expected: the underlying set
∏i∈I Ai is ordered component-wise and (⊥i)i∈I is the least element. The smash product A⊗B is obtained
by identifying all tuples of A×B in which at least one component is ⊥. The coproduct A⊕B is called
the coalesced sum. It is similar to the coproduct of sets but identifies ι1(⊥A) = ι2(⊥B) =⊥A⊕B.

The lifting comonad (−)⊥ associated with the adjunction between DCPO⊥! and DCPO extends a
dcpo with a new least element⊥. Notably it allows to represent (merely) Scott-continuous maps as strict
Kleisli morphisms f : A⊥→ B in DCPO⊥!. Conversely, a strict map out of A⊥ can be specified by its
(merely Scott-continuous) action on the elements of A. I will use the same notation to describe the flat
domain construction (−)⊥ : Set→ DCPO⊥!, left adjoint to the forgetful functor from DCPO⊥! to Set.

One remarkable property enjoyed by DCPO⊥! (and indeed by all DCPO⊥-enriched categories [9]),
is that every enriched endofunctor F has both an initial algebra c : FµF → µF and a terminal coalgebra
d : νF → FνF . Furthermore, the two coincide in the sense that µF = νF and c−1 = d.

Jérémie Koenig 9

3.4 Algebraic characterization of strategies

The costrategies for an effect signature E and a set of outcomes X can be characterized as

S̄E(X) ∼= µY · ÊY ⊕X⊥ , (4)

where

Definition 9. the endofunctor Ê : DCPO⊥!→ DCPO⊥! associated with the effect signature E is:

ÊY :=
⊕

m

(
∏

n
Y
)
⊥
.

Algebraically, the introduction of (−)⊥ in the definition of ÊY allows the operations to be non-strict.
When an effect m ∈ E is interpreted, the resulting computation may be partially or completely defined
even if the continuation always diverges, in other words it may be the case that αm(⊥)n∈ar(m) 6= ⊥. In
terms of game semantics, this corresponds to the fact that all odd-length prefixes of coplays are observed,
as witnessed by the case m ∈ P̄E in Definition 6.

Theorem 10. For an effect signature E and a set X, the pointed dcpo S̄E(X) carries the coinciding initial
algebra and terminal coalgebra for the endofunctor Y 7→ ÊY ⊕X⊥ on DCPO⊥!.

Proof. The algebra [ĉE
X , η̂] : Ê S̄E(X)⊕X⊥→ S̄E(X) can be defined as:

ĉE
X
(
m〈σn〉n∈ar(m)

)
:= {mns | n ∈ ar(m),s ∈ σn} η̂

E
X (x) := {x}

It is easy to verify that the coplays in ĉE
X
(
m〈cn〉n∈ar(m)

)
and η̂E

X (x) are downward closed and pairwise
coherent if the σi’s are. The coalgebra d̂E

X : S̄E(X)→ ÊS̄E(X)⊕X⊥ can be defined as:

d̂E
X (σ) :=

m〈{s | mns ∈ σ}〉n∈ar(m) if m ∈ σ

x if x ∈ σ

⊥ otherwise

The coherence condition on σ ensures that the cases are mutually exclusive and that ĉE
X and d̂E

X are
mutual inverses. Thanks to the coincidence of initial algebras and terminal coalgebras in DCPO⊥!, this
is enough to establish the initiality of 〈S̄E(X), [ĉE

X , η̂
E
X]〉 and the terminality of 〈S̄E(X), d̂E

X 〉.

While much more general constructions of free algebras in dcpos have been described [14], they
tend to be complex. At the cost of a restriction to effect signatures and sets of variables, costrategies
provide a simple construction with a transparent operational reading. It may also be possible to extend
this construction to incorporate limited forms of equational theories by acting on the ordering of coplays.

3.5 Strategies as ideal completions

The algebraic characterization of costrategies given above invites us to consider more closely the rela-
tionship between E∗ : Set→ Set and S̄E : Set→ DCPO⊥!. It turns out the costrategies in S̄E(X) can be
constructed as the ideal completion of E∗(X⊥).

Definition 11. An ideal of a partial order A is a downward closed directed subset of A. I will write I A
for the set of ideals of A, ordered under set inclusion.

10 Grounding Game Semantics in Categorical Algebra

The ideals of A form a dcpo; if A has a least element, then I A is pointed dcpo. In fact, I A is the
free dcpo generated by the partially ordered set A, as expressed by the adjunctions:

DCPO ⊥ Pos

a a

DCPO⊥! ⊥ Pos⊥

U

(−)⊥

I

(−)⊥

U

U

I

U

The unit ↓ : A→ I A embeds a partial order A into its completion. A (strict) Scott-continuous map of
type f : I A→ B can be specified by its (strict) monotonic action f (↓a) on the elements a ∈ A.

Definition 12 (Ordering terms). For an effect signature E and a partial order 〈X ,≤〉, we extend EX to a
partial order E〈X ,≤〉 := 〈EX ,v〉 by defining v using the rule:

∀n ∈ ar(m) · xn ≤ yn

m〈xn〉n∈ar(m) v m〈yn〉n∈ar(m)

If 〈X ,≤〉 has a least element ⊥, we extend E∗X to a partial order 〈E∗X ,v〉 using the inductive rules:

∀n ∈ ar(m) · tn v t ′n
m(tn)n∈ar(m) v m(t ′n)n∈ar(m)

x≤ y
xv y ⊥v t

Here the elements of E∗X are interpreted as partial terms, where the special variable ⊥ ∈ X indicates
a lack of information about a particular subterm. A situation where t1, t2 v t denotes that t1 and t2 are
both truncated versions of the more defined term t and are therefore compatible in the following sense:
although t1 may be defined where t2 is not and vice versa, they will not conflict on any of their defined
subterms and they can be merged into t1tt2. By using the ideal completion, we can extend this procedure
to arbitrary directed sets, enabling the construction of infinite terms.

Theorem 13. For an effect signature E and a set X, the following partial orders are isomorphic:

S̄E(X) ∼= I E∗(X⊥)

Proof. It suffices to show that I E∗(X⊥) satisfies the characterization of S̄E(X) given by Theorem 10.
We can proceed in the same way. The algebra [ĉE

X , η̂
E
X] : ÊI E∗(X⊥)⊕X⊥→I E∗(X⊥) is defined by:

ĉE
X
(
m〈↓ tn〉n∈ar(m)

)
:= ↓m(tn)n∈ar(m) η̂

E
X (x) := ↓x

The coalgebra d̂E
X : I E∗(X⊥)→ ÊI E∗(X⊥)⊕X⊥ can be defined as:

d̂E
X
(
↓m(tn)n∈ar(m)

)
:= m〈↓tn〉n∈ar(m) d̂E

X (↓x) := x

As before, it is easy to check that the required conditions hold and that ĉE
X and d̂E

X are mutual inverses.

Finally, it has been shown [11] that I E∗(X⊥) ∼= E∞(X⊥). Hence, Theorem 13 also establishes a
connection between strategies and the coalgebraic approach discussed in §2.4.

Jérémie Koenig 11

Remark 14. The construction of strategies as ideal completions could provide a better starting point for
incorporating equational theories in strategy models, since it is built from terms rather than plays.

Moreover, I believe that I should generalize to a large class of order completions. This would give
a whole spectrum of models providing support “à la carte” for undefined behaviors, infinite behaviors,
and various kinds of nondeterminism up to and including dual nondeterminism [28].

Making this possible will require a better understanding of the ways initial algebra and terminal
coalgebra constructions propagate through the adjunctions defined by order completions, perhaps based
on their constructions as limits and colimits of ω-chains [10]. Such an analysis should also shed light
on the relationship between the endofunctors Ê and E.

4 Algebraic game semantics

The constructions given in the previous section provide a model of algebraic effects grounded in an in-
terpretation of effect signatures as games. Conversely, while effect signatures are a very limited class of
games, the analysis above establishes a blueprint for a broader reading of games and strategy construc-
tions under the lens of categorical algebra.

4.1 Multi-sorted signatures

The games described by effect signatures are almost stateless: in essence, the game begins anew every
time the proponent P is back in control. This is due to the single-sorted nature of effect signatures: while
arities provide the opponent O with different sets of moves in different situations, the single sort does
not permit the same flexibility for P. By generalizing the framework to multi-sorted signatures, we gain
a considerable amount of expressivity. In fact, multi-sorted signatures can model the mechanics of all
sequential alternating games.

Definition 15. A multi-sorted effect signature is a tuple E = 〈Q̄,M̄, δ̄ ,Q,M,δ 〉. The components define:

• a set Q̄ of sorts and a set Q of arities;

• for every sort q ∈ Q̄ a set M̄q of function symbols and for every m ∈ M̄q an arity δ̄q(m) ∈ Q;

• for every arity r ∈ Q a set Mr of argument positions and for every n ∈Mr a sort δr(n) ∈ Q̄.

This presentation emphasizes the symmetry between the two players. The sorts (proponent state) and
arities (opponent states) respectively type operations and argument tuples. The game alternates between
a proponent choice of operation and an opponent choice of argument position.

Following the blueprint laid out in §3, we must now assign endofunctors to multi-sorted signatures.
We will work in categories of Q or Q̄-indexed tuples of sets and functions.

Definition 16 (Endofunctors). Given a multi-sorted effect signature E = 〈Q̄,M̄, δ̄ ,Q,M,δ 〉, we will use:

Ê : SetQ→ SetQ̄ (ÊX)q∈Q̄ := ∑
m∈M̄q

X
δ̄q(m)

Ě : SetQ̄→ SetQ (ĚX̄)r∈Q := ∏
n∈Mr

X̄δr(n)

The associated endofunctors can then be defined as:

Ē : SetQ̄→ SetQ̄ Ē := Ê ◦ Ě

E : SetQ→ SetQ E := Ě ◦ Ê

12 Grounding Game Semantics in Categorical Algebra

Definition 17 (Term algebra). Given a multi-sorted effect signature E = 〈Q̄,M̄, δ̄ ,Q,M,δ 〉, and a family
of sets X ∈ SetQ̄, the term algebras Ē∗X ∈ SetQ̄ and E∗X ∈ SetQ are generated by the following grammar:

t ∈ Ē∗q ::= mk | x
(
k ∈ E∗

δ̄q(m)
, x ∈ Xq

)
k ∈ E∗r ::= (tn)n∈Mr

(
tn ∈ Ē∗

δr(n)

)
If the sets Xq are partially ordered, we can define:

k v k′

mk v mk′
x≤ y
xv y

∀n ∈Mr · tn v t ′n
(tn)n∈Mr v (t ′n)n∈Mr

Note that defining a set of costrategies or strategies requires specifying an initial sort or arity.

Definition 18. Consider a multi-sorted effect signature E = 〈Q̄,M̄, δ̄ ,Q,M,δ 〉.
• The costrategies of sort q are the ideals σ̄ ∈I Ē∗q (∅⊥)q∈Q̄.

• The strategies of arity r are the ideals σ ∈I E∗r (∅⊥)q∈Q̄.

Since the game is entirely described by the multi-sorted signature E, it is no longer necessary to use a
non-trivial set of outcomes beyond the undefined outcome⊥. It may however be interesting to investigate
applications of strategy variables by specifying non-empty sets of possible outcomes Xq for each sort q,
allowing the strategy to “escape” the game and terminate with an intermediate outcome. It may then be
possible to use monadic constructions to define a notion of sequential composition of strategies.

4.2 Coinductive games

Consider the branching functor B : SET→ SET defined by

BX := ∑
I∈Set

X I .

Then the multi-signatures themselves can be regarded as coalgebras:

E : Q→ BBQ

The terminal coalgebra νBB is a universal multi-signature: every arity in every signature E can be
mapped to a proper game G ∈ νBB, abstracting away the state-based representation based on sorts and
arities.

The branching functor is very versatile. We can think of the shape represented by BX as the first
layer of rooted tree, where X gives the type of subtrees. Multi-layer trees can be obtained by iterating B
and the terminal coalgebra can represent infinite trees.

Natural transformations between functors constructed using B represent transformations of layers
within these trees, and can be used to manipulate games. These transformations can then be used to
“compile” more abstract game models with high-level structure into the more concrete and low-level
form based in multi-sorted signatures. This could be used to reduce existing game models to a common
framework to better understand and compare their structures.

Lastly, as with strategies, it may be interesting to consider games with variables in X , represented in
the terminal coalgebra νY · BBY +X . Beyond sequential compositionality, variables could be used to
introduce fixpoint operators for games and could find applications as “join points” in concurrent game
models.

Jérémie Koenig 13

5 Conclusion

Although much work remains to be done, looking at constructions of game models through the prism of
categorical algebra offers many promising avenues of investigation. Multi-sorted signatures constitute a
low-level representation for sequential alternating games. Looking at existing forms of game semantics
using algebraic tools could reveal interesting structures, and suggest general principles for the design
of general-purpose models capable of accounting for the behaviors of a wide range of heterogeneous
components.

Acknowledgments

This work greatly benefited from conversations with Arthur Oliveira Vale, Léo Stefanesco, Paul-André
Melliès, and Zhong Shao. It was supported in part by NSF grants 1521523, 1763399, and 2019285.

References

[1] S. Abramsky & A. Jung (1994): Domain Theory. In S. Abramsky, D. Gabbay & T. S. E. Maibaum, editors:
Handbook of Logic in Computer Science, Oxford University Press, pp. 1–168. Available at http://www.
cs.ox.ac.uk/files/298/handbook.pdf.

[2] Samson Abramsky (2010): From CSP to Game Semantics. In: Reflections on the Work of C.A.R. Hoare,
Springer, London, pp. 33–45, doi:10.1007/978-1-84882-912-1_2.

[3] Samson Abramsky, Kohei Honda & Guy Mccusker (1998): A Fully Abstract Game Semantics for General
References. In: Proceedings of the Thirteenth Annual IEEE Symposium on Logic in Computer Science,
Society Press, pp. 334–344.

[4] Samson Abramsky & Radha Jagadeesan (1994): Games and full completeness for multiplicative linear logic.
J. Symb. Log. 59(2), pp. 543–574.

[5] Samson Abramsky, Radha Jagadeesan & Pasquale Malacaria (2000): Full Abstraction for PCF. Inf. Comput.
163(2), pp. 409–470, doi:10.1006/inco.2000.2930. Available at http://www.sciencedirect.com/
science/article/pii/S0890540100929304.

[6] Samson Abramsky & Guy McCusker (1997): Linearity, Sharing and State: A Fully Abstract Game Se-
mantics for Idealized Algol with Active Expressions. In: Algol-like Languages, Birkhäuser, Boston,
MA, pp. 297–329, doi:10.1007/978-1-4757-3851-3_10. Available at https://doi.org/10.1007/
978-1-4757-3851-3_10.

[7] Samson Abramsky & Guy McCusker (1999): Game semantics. In: Computational logic: Proceed-
ings of the 1997 Marktoberdorf Summer School, Springer, Berlin, Heidelberg, pp. 1–55, doi:10.1007/
978-3-642-58622-4_1.

[8] Samson Abramsky & Paul-André Melliès (1999): Concurrent Games and Full Completeness. In: Proceed-
ings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, IEEE Computer Society,
USA, pp. 431–442, doi:10.1109/LICS.1999.782638.

[9] J. Adamek (1995): Recursive Data Types in Algebraically ω-Complete Categories. Information and Com-
putation 118(2), pp. 181–190, doi:https://doi.org/10.1006/inco.1995.1061.

[10] Jiřı́ Adámek & Václav Koubek (1979): Least fixed point of a functor. Journal of Computer and System
Sciences 19(2), pp. 163–178.

[11] Jiřı́ Adámek (2002): Final Coalgebras are Ideal Completions of Initial Algebras. Journal of Logic and
Computation 12(2), pp. 217–242, doi:10.1093/logcom/12.2.217.

http://nsf.gov
http://www.cs.ox.ac.uk/files/298/handbook.pdf
http://www.cs.ox.ac.uk/files/298/handbook.pdf
http://dx.doi.org/10.1007/978-1-84882-912-1_2
http://dx.doi.org/10.1006/inco.2000.2930
http://www.sciencedirect.com/science/article/pii/S0890540100929304
http://www.sciencedirect.com/science/article/pii/S0890540100929304
http://dx.doi.org/10.1007/978-1-4757-3851-3_10
https://doi.org/10.1007/978-1-4757-3851-3_10
https://doi.org/10.1007/978-1-4757-3851-3_10
http://dx.doi.org/10.1007/978-3-642-58622-4_1
http://dx.doi.org/10.1007/978-3-642-58622-4_1
http://dx.doi.org/10.1109/LICS.1999.782638
http://dx.doi.org/https://doi.org/10.1006/inco.1995.1061
http://dx.doi.org/10.1093/logcom/12.2.217

14 Grounding Game Semantics in Categorical Algebra

[12] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin Hriţcu, David
Pichardie, Benjamin C Pierce, Randy Pollack & Andrew Tolmach (2014): A verified information-flow archi-
tecture. In: Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL’14, ACM, New York, NY, USA, pp. 165–178, doi:10.1145/2535838.2535839.

[13] Andrew W Appel, Lennart Beringer, Adam Chlipala, Benjamin C Pierce, Zhong Shao, Stephanie Weirich &
Steve Zdancewic (2017): Position paper: the science of deep specification. Phil. Trans. R. Soc. A 375(2104),
p. 20160331, doi:10.1098/rsta.2016.0331.

[14] Ingo Battenfeld (2013): Comparing approaches to free dcpo-algebra constructions. The Journal of Logic
and Algebraic Programming 82(1), pp. 53–70, doi:https://doi.org/10.1016/j.jlap.2012.10.001.

[15] Andreas Blass (1992): A game semantics for linear logic. Ann. Pure Appl. Log. 56(1–3), pp. 183–220,
doi:10.1016/0168-0072(92)90073-9.

[16] Ana C. Calderon & Guy McCusker (2010): Understanding Game Semantics Through Coherence Spaces.
Electronic Notes in Theoretical Computer Science 265, pp. 231–244, doi:https://doi.org/10.1016/j.
entcs.2010.08.014. Proceedings of the 26th Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS 2010).

[17] Simon Castellan, Pierre Clairambault, Jonathan Hayman & Glynn Winskel (2018): Non-angelic concurrent
game semantics. In: Proceedings of the 21st International Conference on Foundations of Software Sci-
ence and Computation Structures, FoSSaCS 2018, Springer, Cham, Switzerland, pp. 3–19, doi:10.1007/
978-3-319-89366-2_1.

[18] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala & Arvind (2017): Kami:
A Platform for High-Level Parametric Hardware Specification and Its Modular Verification. Proc. ACM
Program. Lang. 1(ICFP), doi:10.1145/3110268.

[19] Dan R Ghica & Andrzej S Murawski (2004): Angelic semantics of fine-grained concurrency. In: International
Conference on Foundations of Software Science and Computation Structures, Springer, pp. 211–225.

[20] Dan R. Ghica & Andrzej S. Murawski (2004): Angelic Semantics of Fine-Grained Concurrency. In: Proceed-
ings of the 7th International Conference on Foundations of Software Science and Computation Structures,
FoSSaCS 2004, Springer, Berlin, Heidelberg, pp. 211–225, doi:10.1007/978-3-540-24727-2_16.

[21] W. John Gowers & James D. Laird (2018): A Fully Abstract Game Semantics for Countable Nondeterminism.
In Dan Ghica & Achim Jung, editors: 27th EACSL Annual Conference on Computer Science Logic (CSL
2018), Leibniz International Proceedings in Informatics (LIPIcs) 119, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 24:1–24:18, doi:10.4230/LIPIcs.CSL.2018.24. Available at
http://drops.dagstuhl.de/opus/volltexte/2018/9691.

[22] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun
Weng, Haozhong Zhang & Yu Guo (2015): Deep Specifications and Certified Abstraction Layers. In: Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, ACM, New York, NY, USA, pp. 595–608, doi:10.1145/2676726.2676975.

[23] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg & David Costanzo (2016):
CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In: Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, USENIX Associa-
tion, Berkeley, CA, USA, pp. 653–669, doi:10.5555/3026877.3026928.

[24] Russell Harmer & Guy McCusker (1999): A fully abstract game semantics for finite nondeterminism. In:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, IEEE Computer
Society, USA, pp. 422–430, doi:10.1109/LICS.1999.782637.

[25] J. M. E. Hyland & C.-H. L. Ong (2000): On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2),
pp. 285–408, doi:10.1006/inco.2000.2917.

[26] Martin Hyland, Gordon Plotkin & John Power (2006): Combining effects: Sum and tensor. Theoretical
Computer Science 357(1), pp. 70–99, doi:https://doi.org/10.1016/j.tcs.2006.03.013. Clifford
Lectures and the Mathematical Foundations of Programming Semantics.

http://dx.doi.org/10.1145/2535838.2535839
http://dx.doi.org/10.1098/rsta.2016.0331
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2012.10.001
http://dx.doi.org/10.1016/0168-0072(92)90073-9
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2010.08.014
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2010.08.014
http://dx.doi.org/10.1007/978-3-319-89366-2_1
http://dx.doi.org/10.1007/978-3-319-89366-2_1
http://dx.doi.org/10.1145/3110268
http://dx.doi.org/10.1007/978-3-540-24727-2_16
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.24
http://drops.dagstuhl.de/opus/volltexte/2018/9691
http://dx.doi.org/10.1145/2676726.2676975
http://dx.doi.org/10.5555/3026877.3026928
http://dx.doi.org/10.1109/LICS.1999.782637
http://dx.doi.org/10.1006/inco.2000.2917
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2006.03.013

Jérémie Koenig 15

[27] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish et al. (2009): seL4: formal verification of an OS
kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
ACM, New York, NY, USA, pp. 207–220, doi:10.1145/1629575.1629596.

[28] Jérémie Koenig & Zhong Shao (2020): Refinement-Based Game Semantics for Certified Abstraction Layers.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, ACM,
New York, NY, USA, p. 633–647, doi:10.1145/3373718.3394799.

[29] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C
Pierce & Steve Zdancewic (2019): From C to interaction trees: specifying, verifying, and testing a networked
server. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, ACM, pp. 234–248.

[30] Dexter Kozen (2011): Realization of Coinductive Types. In Michael Mislove & Joël Ouaknine, editors: Proc.
27th Conf. Math. Found. Programming Semantics (MFPS XXVII), Elsevier Electronic Notes in Theoretical
Computer Science, Pittsburgh, PA, pp. 148–155.

[31] Ramana Kumar, Magnus Myreen, Michael Norrish & Scott Owens (2014): CakeML: A Verified Implemen-
tation of ML. In: Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’14, ACM, New York, NY, USA, pp. 179–191, doi:10.1145/2578855.
2535841.

[32] James Laird (1997): Full abstraction for functional languages with control. In: Proceedings of the 12th
Annual IEEE Symposium on Logic in Computer Science, LICS ’97, IEEE Computer Society, USA, pp.
58–67, doi:10.1109/LICS.1997.614931.

[33] Xavier Leroy (2009): Formal Verification of a Realistic Compiler. Commun. ACM 52(7), pp. 107–115,
doi:10.1145/1538788.1538814.

[34] Paul-André Mellies (2004): Asynchronous games 2: the true concurrency of innocence. In: Proceedings of
the 15th International Conference on Concurrency Theory, CONCUR 2004, Springer, Berlin, Heidelberg,
pp. 448–465.

[35] Paul-André Melliès (2019): Categorical combinatorics of scheduling and synchronization in game semantics.
Proceedings of the ACM on Programming Languages 3(POPL), pp. 1–30.

[36] Paul-André Melliès & Samuel Mimram (2007): Asynchronous Games: Innocence Without Alternation. In:
Proceedings of the 18th International Conference on Concurrency Theory, CONCUR 2007, Springer, Berlin,
Heidelberg, pp. 395–411, doi:10.1007/978-3-540-74407-8_27.

[37] Eugenio Moggi (1991): Notions of computation and monads. Information and computation 93(1), pp. 55–92.

[38] Andrzej S. Murawski (2008): Reachability Games and Game Semantics: Comparing Nondeterministic Pro-
grams. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
IEEE Computer Society, USA, pp. 353–363, doi:10.1109/LICS.2008.24.

[39] Gordon Plotkin & John Power (2001): Adequacy for Algebraic Effects. In: Proceedings of the 4th In-
ternational Conference on Foundations of Software Science and Computation Structures, FoSSaCS 2001,
Springer, Berlin, Heidelberg, pp. 1–24, doi:10.1007/3-540-45315-6_1.

[40] Gordon Plotkin & Matija Pretnar (2009): Handlers of algebraic effects. In: Proceedings of the 18th Eu-
ropean Symposium on Programming, ESOP 2009, Springer, Berlin, Heidelberg, pp. 80–94, doi:10.1007/
978-3-642-00590-9_7.

[41] Zhong Shao (2010): Certified Software. Communications of the ACM 53(12), pp. 56–66, doi:10.1145/
1859204.1859226.

[42] Věra Trnková, Jiřı́ Adámek, Václav Koubek & Jan Reiterman (1975): Free algebras, input processes and
free monads. Commentationes Mathematicae Universitatis Carolinae 16(2), pp. 339–351. Available at http:
//hdl.handle.net/10338.dmlcz/105628.

http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1145/3373718.3394799
http://dx.doi.org/10.1145/2578855.2535841
http://dx.doi.org/10.1145/2578855.2535841
http://dx.doi.org/10.1109/LICS.1997.614931
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-540-74407-8_27
http://dx.doi.org/10.1109/LICS.2008.24
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1145/1859204.1859226
http://dx.doi.org/10.1145/1859204.1859226
http://hdl.handle.net/10338.dmlcz/105628
http://hdl.handle.net/10338.dmlcz/105628

16 Grounding Game Semantics in Categorical Algebra

[43] Takeshi Tsukada & C.-H. Luke Ong (2015): Nondeterminism in game semantics via sheaves. In: Proceedings
of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, IEEE Computer
Society, USA, pp. 220–231, doi:10.1109/LICS.2015.30.

[44] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin & Steve Zdancewic (2012): Formalizing the LLVM
intermediate representation for verified program transformations. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’12, ACM, New York, NY,
USA, pp. 427–440, doi:10.1145/2103621.2103709.

http://dx.doi.org/10.1109/LICS.2015.30
http://dx.doi.org/10.1145/2103621.2103709

	Introduction
	Models of computational side-effects
	Monadic effects
	Algebraic effects
	Initial algebras
	Final coalgebras

	Strategies for uninterpreted effects
	Games and strategies
	Strategies for effect signatures
	Complete partial orders
	Algebraic characterization of strategies
	Strategies as ideal completions

	Algebraic game semantics
	Multi-sorted signatures
	Coinductive games

	Conclusion

