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We define a symmetric monoidal category modelling fuzzy concepts and fuzzy conceptual reasoning
within Gärdenfors’ framework of conceptual (convex) spaces. We propose log-concave functions as
models of fuzzy concepts, showing that these are the most general choice satisfying a criterion due
to Gärdenfors and which are well-behaved compositionally. We then generalise these to define the
category of log-concave probabilistic channels between convex spaces, which allows one to model
fuzzy reasoning with noisy inputs, and provides a novel example of a Markov category.

1 Introduction

How can we model conceptual reasoning in a way which is formal and yet reflects the fluidity of con-
cept use in human cognition? One answer to this question is given by Peter Gärdenfors’ framework of
conceptual spaces [8, 9, 10], in which domains of conceptual reasoning are modelled by mathematical
spaces and concepts are described geometrically, typically as convex regions of these spaces.

The theory of conceptual spaces is defined only semi-formally, giving room for many authors to
define their own mathematical formalisations [1, 18, 23, 15, 2]. A notable aspect of the framework is that
it is compositional in the sense that each overall conceptual space is given by composing various simpler
domains (e.g. colour, sound, taste). This aspect makes the framework highly suited to formalisation in
terms of monoidal categories.

Bolt et al. [3] have presented a categorical model of conceptual spaces within the DisCoCat frame-
work for natural language semantics [5], using the compact monoidal category ConvRel of convex rela-
tions. Here a conceptual space is modelled as a convex algebra A and the meaning of a word (concept)
as a convex subset. The Bolt et al. model demonstrates the use of monoidal categories in modelling the
composition of conceptual spaces, and the correlations between domains contained within concepts.

However, like most formalisations of conceptual spaces, the model of [3] is limited to describing only
what we may call crisp concepts, which are such that any point of the conceptual space either strictly is or
is not a member, with no ‘grey areas’. In contrast, most discussions of concepts in the cognitive science
literature acknowledge that concepts should be fuzzy or graded in the sense that for any point x the degree
of membership of a concept C should form a scalar value C(x)∈ [0,1]. For example, Gärdenfors suggests
defining fuzzy membership based on distance from a central region [10] representing a prototype [19].

In this work we propose a mathematical definition of fuzzy concepts which is compositionally well-
behaved and contains crisp concepts (convex regions) as a special case. Specifically we propose that
fuzzy concepts on a space X should be given by (measurable) log-concave functions C : X → [0,1]. We
prove that these are essentially the smallest class of functions which are closed compositionally and
which satisfy the criterion of quasi-concavity, identified implicitly by Gärdenfors, which ensures that
any point z lying ‘in-between’ two points x,y belongs to the concept ‘as much’ as they do.
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Beyond concepts, a categorical approach is well-suited to describing processes between spaces. To
describe fuzzy processes mathematically, one typically works in a the symmetric monoidal category
Prob whose objects are measurable spaces and morphisms are probabilistic channels f : X → Y [14,
11, 16]. These send each point x of X to a (sub-)probability measure (distribution) over Y . In this
work, to model fuzzy conceptual processes we introduce log-concave channels, and prove that they
form a symmetric monoidal subcategory LCon of Prob. In particular, the effects on a space X in LCon
correspond precisely to fuzzy concepts in our sense, while the states of X correspond to the widely
studied class of log-concave probability measures over the space X [20, 13]. The latter include many
standard distributions such as Gaussians, allowing us to model ‘noisy inputs’ to our processes. More
general morphisms X → Y in LCon may be seen as transformations of fuzzy concepts.

There are many avenues for further exploration of LCon as a model of fuzzy conceptual processes,
such as in the modelling of metaphors as maps between conceptual spaces, and in describing concepts
formed by neural network systems with noisy inputs such as β -VAEs[12]. More broadly, LCon may be
of wider use in categorical probability theory as a novel example of a Markov category [7].

Related work Our work extends the model of Bolt et al. [3] to fuzzy concepts. Other such extensions
include [22], which considers arbitrary measurable functions into the interval [−1,1], and [4], which
works with ‘generalised relations’, rather than measure theory. Our definition of fuzzy concept is inspired
by that of Bechberger and Kuhnberger [2], though they replace convexity by star-shapedness.

Structure of article We recall convex conceptual spaces and crisp concepts (Section 2), before propos-
ing and justifying our definition of fuzzy concepts as log-concave functions (Section 3). Next we recap
categorical probability theory (Section 4), before defining the category LCon of log-concave channels
as a model of conceptual processes (Section 5). Our main results Theorems 14 and 15 prove that LCon
is the ‘largest’ monoidal category whose effects are fuzzy concepts. We close by constructing examples
of log-concave channels (Section 6) and giving a toy example of conceptual reasoning (Section 7).

2 Conceptual Spaces

Peter Gärdenfors’ framework of conceptual spaces provides an approach to the modelling of human and
artificial conceptual reasoning, motivated by the cognitive sciences, and mathematically based on the
notion of ‘convexity’ [9, 10]. In this approach, a conceptual space C (such as that of images, foods or
people) is described as a product of typically simpler spaces called ‘domains’ (such as those of colours,
sounds, tastes, temperatures . . . ). Based on psychological experiments, and arguments around learnabil-
ity, concepts are modelled as regions of a conceptual space which are convex, meaning that any point
lying in-between two instances of a concept is also an instance of that concept. In this article we work
with an abstract definition of a conceptual space, without explicit reference to domains.

We begin from the formalisation due to Bolt et al. in terms of ‘convex algebras’ [3]. Formally, these
are algebras for the finite distribution monad. In detail, for any set X we write D(X) for the set of
formal finite convex sums ∑

n
i=1 pi|xi〉 of elements xi of X , where each pi ∈ [0,1] with ∑

n
i=1 pi = 1. These

formal sums satisfy natural conditions suggested by the notation: for example, the order of the pi|xi〉 is
irrelevant, and the sum is equal to |xi〉 when pi = 1.
Definition 1. A convex algebra is a set X coming with a function α : D(X)→ X satisfying

α(|x〉) = x α(∑
i

piα(∑
j

qi, j|xi, j〉)) = α(∑
i, j

piqi, j|xi, j〉)
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For any elements xi ∈ X and positive weights pi with ∑i pi = 1 we may thus define a convex combination

n

∑
i=1

pixi := α(
n

∑
i=1

pi|xi〉) ∈ X (1)

We will denote binary convex combinations by

x+p y := px+(1− p)y

for x,y ∈ X and p ∈ [0,1]. A map of convex algebras f : X → Y is called affine when f (∑n
i=1 pixi) =

∑
n
i=1 pi f (xi) for all convex combinations.

To discuss fuzzy notions later, we will require the tools of probability theory, and thus consider
spaces which are measurable. Recall that a measurable space is a set X with a σ -algebra ΣX ⊆ P(X), a
family of subsets, which are called measurable, which contains X itself and is closed under complements
and countable unions. A map of measurable spaces f : X → Y is measurable if f−1(M) ∈ ΣX whenever
M ∈ ΣY . Our basic model of a conceptual space is now the following.

Definition 2. By a convex space we mean a convex algebra (X ,α) which is also a measurable space. A
crisp concept of X is a measurable subset C which is convex, meaning that whenever x1, . . . ,xn ∈C then
∑

n
i=1 pixi ∈C also. We denote the set of crisp concepts of X by Con(X).

Lemma 3. Let X be a convex algebra. Then the convex subsets of X themselves forms a convex algebra
via the Minkowski sum:

A+p B := {a+p b | a ∈ A,b ∈ B} (2)

for p ∈ [0,1]. Hence if X is a convex space such that A+p B is measurable for all crisp concepts A,B,
then Con(X) forms a convex algebra.

Examples 4. Let us consider some examples of convex spaces and their concepts; for more see [3].

1. The unit interval [0,1] forms a convex space with concepts as sub-intervals.

2. Any normed vector space (X ,‖−‖) forms a convex space via its Borel σ -algebra, which is gen-
erated by the open subsets. In particular X = Rn forms a convex space with either its Borel or
Lebesgue σ -algebras. The concepts are (measurable) convex subsets in the usual sense.

3. Any convex measurable subset (crisp concept) C of a convex space X is again a convex space.

4. Any convex algebra (X ,α) forms a convex space by using the discrete σ -algebra ΣX = P(X).

5. Any join semi-lattice (X ,∨) forms a convex algebra (and hence space) by taking x+p y = x∨y for
all p ∈ (0,1) [3], with concepts as ∨-closed subsets. This allows one to consider discrete convex
spaces, such as truth values {0,01}.

6. The product of convex spaces X ,Y is the convex space on X×Y with operations

n

∑
i=1

pi(xi,yi) = (
n

∑
i=1

pixi,
n

∑
i=1

piyi)

for xi ∈ X , yi ∈ Y , and equipped with the product σ -algebra ΣX×Y , the algebra generated by the
subsets of the form A×B for A ∈ ΣX and B ∈ ΣY . In particular when C ∈ Con(X),D ∈ Con(Y )
then C×D ∈ Con(X×Y ).
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7. In [3] toy conceptual spaces of colours and tastes are defined as follows. Colour space is defined
as the 3-dimensional cube

C = [0,1]3 = {(R,G,B) | 0≤ R,G,B≤ 1}

of red-green-blue intensities. Specific points include (pure) green g := (0,1,0), yellow := (1,1,0)
etc. We can define a crisp concept ‘green’ for example as the (convex) open ball G = Bε

g around
green of a given radius ε > 0, or more sharply as the singleton {g}. A simple taste space T is
defined as the convex space (simplex) in R4 generated by the four points sweet, bitter, salt, and
sour

T = {(t1, t2, t3, t4) | ti ≥ 0,∑ ti = 1}

By taking the product of these convex spaces, we can form a toy food space as

F =C×T

in which each food is modelled by a concept relating its colours and tastes.

8. Any set of exemplar points E in a convex space define a convex set via their convex closure E,
which is defined as the intersection of all convex subsets C ⊆ X containing E, or equivalently as
its set of convex combinations

E = {
n

∑
i=1

piei | ei ∈ E}

In spaces such as Rn, the set E will be a closed crisp concept. We can think of E as a concept
‘learned’ from these exemplars, with the convex closure allowing us to infer new instances of the
concept.

3 Fuzzy Concepts

The concepts described so far have been crisp, or ‘sharp’, in that every element x ∈ X either is or is not
a member of the concept, with either x ∈C or x /∈C. Real-life concept membership is arguably a more
‘fuzzy’ notion, taking a value in the range [0,1]. Thus a concept should instead be a ‘fuzzy set’, a map

C : X → [0,1]

where C(x) ∈ [0,1] denotes the extent to which x is an instance of the concept C. Such mappings are
partially ordered, point-wise with C ≤ D whenever C(x)≤ D(x)∀x.

Now fuzzy concepts should not be arbitrary mappings, but respect the convex structure of X ap-
propriately. Gärdenfors has suggested one structural feature that fuzzy concepts should satisfy, which
amounts to the following requirement1 [9].

Criterion 5. [9] Let X be a convex space. Fuzzy concepts C : X → [0,1] should be quasi-concave,
meaning that for all x,y ∈ X , p ∈ [0,1] we have

C(x+p y)≥min{C(x),C(y)}

Equivalently, each t-cut Ct := {x ∈ X |C(x)≥ t} is a convex subset of X , for t ∈ [0,1].

1The analogous criterion for fuzzy star-shaped sets is considered in [2]
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This requirement is a natural one, stating that if x and y are both members of a concept to degree
t ∈ [0,1], then so is any point lying ‘between’ them. Practically, it allows one to understand a fuzzy
concepts C in terms of its ‘cuts’ {Ct}t∈[0,1], ensuring that these will indeed form crisp concepts.

However, quasi-concavity is not fully sufficient if we wish to develop a compositional theory of fuzzy
concepts, due to the following observation. For any [0,1]-valued maps C,D on X ,Y we define C⊗D on
X×Y by (x,y) 7→C(x)D(y).

Remark 6 (Quasi-concavity is not compositional). For quasi-concave functions C on X and D on Y ,
the map C⊗D is generally not quasi-concave. For example, take X = Y = [0,1] with C(x) = 1− x

2 and

D(y) = y2+1
2 . Then C⊗D acts as (0,0),(1,1) 7→ 1

2 > 0.46875←[ (1
2 ,

1
2).

Hence we require a stricter definition to ensure that concepts may be composed. Luckily, there is a
well-known class of quasi-concave functions which provide a compositionally well-behaved definition
of fuzzy concept.

Definition 7 (Log-Concavity/Fuzzy Concepts). Let X be a convex algebra. A function f : X → R is
log-concave when for all x,y ∈ X and p ∈ [0,1] we have

f (x+p y)≥ f (x)p f (y)1−p.

We define a fuzzy concept on a convex space X to be a measurable log-concave function C : X → [0,1].
We denote the set of fuzzy concepts on X by FCon(X).

Any function f which is concave, with f (x+p y) ≥ f (x)+p f (y), is log-concave. Any log-concave
function is quasi-concave. A function f is log-concave iff

log◦ f : X → [−∞,∞]

is concave, or equivalently if f (x) = eu(x) with u(x) concave. Log-concave functions on spaces Rn form
are well-studied class in statistics, including many standard functions from probability theory [20, 13].
They are known to be well-behaved under compositional operations such as products, convolutions and
marginalisation.

Our definition of fuzzy concept is justified by the following result. Write QuasCon(X) for the set of
quasi-concave functions X → [0,1].

Theorem 8 (Log-Concavity is canonical). The sets C(X) = FCon(X) are the largest choice of a set C(X)
of measurable functions X → [0,1] on each convex space X , which together satisfy the following.

1. Each C(X)⊆ QuasCon(X);

2. C⊗D ∈ C(X⊗Y ) whenever C ∈ C(X), D ∈ C(Y );

3. C([0,1]) contains all affine functions [0,1]→ [0,1] and/or all exponentials x 7→ λ−x for λ ≥ 1.

Proof. Appendix A.

Hence if we accept the criterion of quasi-concavity, wish fuzzy concepts to be closed under tensors,
and include a few basic examples, then log-concave functions are the broadest definition we can take.

Examples 9. Let us meet some examples of fuzzy concepts.
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Figure 1:
Visualization of a fuzzy concept in R2. From a set of exemplars (white crosses) we form their convex
closure, yielding the crisp concept given by the inner triangle. We then form a Gaussian fuzzification as
in (3). Each t-cut of the concept (within the contour lines) is a (convex) crisp concept.

1. Crisp concepts M⊆X correspond precisely to fuzzy concepts 1M on X taking values only in {0,1},
via

1M(x) =

{
1 x ∈M
0 x /∈M

Indeed one may see that 1M is log-concave iff M is convex, and measurable iff M is. We will often
identify a crisp concept M ⊆ X with its fuzzy concept 1M : X → [0,1].

2. Any affine measurable map X → [0,1] is concave and hence a fuzzy concept.

3. Let X be a normed space with metric d, and P ⊆ X a closed crisp concept. Then for any σ2 ≥ 0
we can define a Gaussian ‘fuzzification’ of P as the fuzzy concept

NP
σ (x) := e−

1
2σ2 dH(x,P)2

(3)

where dH denotes the Hausdorff distance dH(x,A) := infa∈A d(x,a) for A ⊆ X . Here P provides
the ‘prototypical’ region in which the concept takes values 1. The concept tends to 0 as we move
away from P at a rate determined by the variance σ2. The limit case σ = 0 corresponds to the
crisp concept 1P. An example plot of such a fuzzy concept is shown in Figure 1.
Many statistical functions besides Gaussians are log-concave also, providing alternative ‘fuzzifi-
cation’ procedures to (3).

4. For any Hilbert space H , any quantum effect a∈ B(H ) with 0≤ a≤ 1 provides an (affine) fuzzy
concept Tr(a−) on the convex space of density matrices of H .

5. Let L be a finite semi-lattice viewed as a convex space with ΣL = P(L). A fuzzy concept on L is a
monotone map L→ [0,1].

4 Probabilistic Channels

Our next goal is to introduce a category of fuzzy processes between spaces. To do so, in this section we
must briefly recall the categorical treatment of fuzzy (probabilistic) mappings, also known as ‘channels’.
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Recall that a finite measure on a measurable space (X ,ΣX) is a function ω : ΣX →R which is additive
on countable disjoint unions, with ω( /0) = 0. A subprobability measure has ω(X)≤ 1 while a probability
measure has ω(X) = 1. These provide a general notion of ‘distribution’ over such a space X . A standard
approach to probability is to work in the following category, known as that of probabilistic relations [16],
or more abstractly as the Kleisli category of the (sub-)Giry Monad [11, 14].

Definition 10. In the symmetric monoidal category category Prob the objects are measurable spaces
(X ,ΣX) and morphisms f : X → Y , are channels, also known as Markov kernels. These are functions
f : X×ΣY → [0,1] such that

1. f (x,−) : ΣY → [0,1] is a subprobability measure on Y , for each x ∈ X ;

2. f (−,M) : X → [0,1] is measurable, for each M ∈ ΣY .

We write f for both the morphism and kernel, and at times write f (x) := f (x,−). Thus a channel sends
each x ∈ X to a ‘(sub)probability distribution’ f (x) over Y , in a measurable way. Given another channel
g : Y → Z, the composite channel (g◦ f ) : X → Z is defined by

(g◦ f )(x,M) :=
∫

y∈Y
g(y,M)d f (x)(y)

for each x ∈ X ,M ∈ ΣZ . The identity channel X → X sends each x ∈ X to the point measure

δx(M) =

{
1 x ∈M
0 x /∈M

The unit object I is the singleton set, with X ⊗Y = X ×Y . For channels f : X →W and g : Y → Z we
define f ⊗g : X⊗Y →W ⊗Z by

( f ⊗g)((x,y),(A,B)) = f (x,A)g(y,B) (4)

for each x ∈ X ,y ∈ Y , A ∈ ΣW ,B ∈ ΣZ . Since the measures f (x),g(y) are finite, this in fact specifies
( f ⊗g)(x,y) over ΣW×Z uniquely as the product measure f (x)⊗g(y) of the measures f (x) and g(y).

As special cases, states ω : I → X of X may be identified with a sub-probability measures over X ,
effects C : X→ I with measurable functions C : X→ [0,1], and scalars I→ I with probabilities p∈ [0,1].

5 The Category of Log-Concave Channels

We can now generalise our notion of fuzzy concept to define a symmetric monoidal category of ‘fuzzy
conceptual processes’.

Definition 11 (Log-Concave Channels). We call a channel f : X → Y between convex spaces X ,Y log-
concave when its kernel f : X×ΣY → [0,1] is log-concave on convex subsets. That is, we have

f (x+p y,A+p B)≥ f (x,A)p f (y,B)1−p (5)

for all x,y ∈ X and convex A,B ∈ ΣY for which A+p B is measurable.

We also call such a channel a conceptual channel. Note that a conceptual channel C : X → I is
precisely a fuzzy concept on X . Many more examples are given in the next section.

Definition 12 (The Category LCon). We define LCon to be the symmetric monoidal subcategory of
Prob whose objects are convex spaces and whose morphisms are log-concave channels.
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To establish that LCon is indeed a well-defined category is non-trivial, being based on an extension
of a central result in the study of log-concave functions, the Prékopa-Leindler inequality.

Theorem 13 (Extended Prékopa-Leindler Inequality). Let X be a convex space, p ∈ (0,1), and µ,ν ω

be σ -finite measures on X satisfying

µ(A)≥ ν(B)p
ω(C)1−p (6)

whenever A,B,C ∈ ΣX with A⊇ B+p C measurable. Next let f ,g,h : X → R≥0 be measurable functions
satisfying

f (x+p y)≥ g(x)ph(y)1−p (7)

for all x,y ∈ X . Then (∫
X

f dµ

)
≥
(∫

X
g dν

)p(∫
X

h dω

)1−p

(8)

Further, if f ,g,h are quasi-concave functions then the same conclusion holds assuming only that (6)
holds for A,B,C ∈ ΣX which are all convex.

Proof. Appendix B.

The usual form of the Prékopa-Leindler inequality is the special case of the above result where
µ = ν = ω is given by the Lebesgue measure on X = Rn, and is proved by induction on n. In appendix
B we given an alternative proof, generalising the result to the multiple measures µ,ν ,ω and beyond Rn.
Using this we can now establish our main result.

Theorem 14. LCon is a well-defined symmetric monoidal subcategory of Prob.

Proof. Appendix B.

We can also extend Theorem 8 to show that our definition of conceptual channels is not arbitrary,
but that LCon is ‘the largest’ subcategory of Prob whose effects can form fuzzy concepts. Let us call a
convex space well-behaved if for all convex measurable subsets A,B, the convex set

{(a+p b, p) | a ∈ A,b ∈ B, p ∈ [0,1]} ⊆ X× [0,1] (9)

is measurable. We conjecture that every normed space, with its Borel σ -algebra, is well-behaved.

Theorem 15 (Log-Concave Channels are Canonical). Let C be a symmetric monoidal subcategory of
Prob containing only well-behaved convex spaces, as well as the space [0,1], and for each object X write
C(X) := C(X , I). Suppose that either of the following hold.

1. Con(X)⊆ C(X)⊆ FCon(X) for all X ;

2. Con(X) ⊆ C(X) ⊆ QuasCon(X) for all X , and C([0,1]) contains all affine (or exponential) func-
tions.

Then there are symmetric monoidal inclusions C ↪→ LCon ↪→ Prob.

Proof. Appendix B.

Remark 16. The proof of Theorem 15 works by showing that log-concave channels satisfy an analogue
of ‘complete positivity’. If a channel f is such that each channel f ⊗ idX preserves fuzzy concepts under
post-composition, for all objects X (or even just X = [0,1]), then f must be log-concave.
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6 Examples of Log-Concave Channels

To make sense of the definition of log-concave channel and illustrate working in the category LCon we
now give numerous examples of its morphisms. We use the graphical calculus for symmetric monoidal
categories, in which morphisms A→ B are boxes with lower input wire A and upper output wire B (read
bottom to top), with I corresponding to the empty diagram [21].

1. Effects. Scalars I→ I are values p ∈ [0,1], and fuzzy concepts on X correspond precisely to effects

C

X

2. States. A state

ω

X

is a sub-probability measure ω on X satisfying

ω(A+p B)≥ ω(A)p
ω(B)1−p (10)

for all convex A,B∈ ΣX for which A+p B∈ ΣX . Measures for which this holds for arbitrary A,B∈ ΣX

are called log-concave measures, and are well-studied with log-concave functions [13]. Thus states
on X are essentially log-concave sub-probability measures.
Given a fuzzy concept C on X , the scalar

ω

C
X =

∫
x∈X

C(x)dω(x) ∈ [0,1]

is the extent to which the concept C is deemed to hold over the ‘distribution of inputs’ ω .

3. States from densities. When X is (a convex measurable subset of) Rn, it is well-known that log-
concave measures ω correspond precisely to log-concave densities, as follows. If ρ : X → R≥0 is a
measurable log-concave function we may define a log-concave measure ω := ρλ X on X by

ω(A) =
∫

A
ρdλ

X (11)

for each A ∈ ΣX , where λ X is the Lebesgue measure on X . Conversely, every log-concave measure
on X is of the form ω = i ◦ω ′ where Y is a measurable convex subset, ω ′ = ρλY for a log-concave
density ρ on Y , and i is the inclusion Y ↪→ X . Specifically Y is the affine closure of ω’s support.
Many standard probability distributions on Rn form states in LCon, including:

(a) Each point measure δx;
(b) Each uniform distribution over a compact convex compact subset C, with density 1C(x) and

measure ω(A) = λ (A∩C)
λ (C) where λ is the Lebesgue measure;

(c) Each multivariate Gaussian distribution, which (on its affine support) has log-concave density

ρ(x) =
1
κ

e−
1
2 (x−µ)TΣ−1(x−µ) (12)

with mean µ ∈ X = Rn, covariance matrix Σ and normalisation κ =
√

((2π)n det(Σ);



10 A Categorical Semantics of Fuzzy Concepts in Conceptual Spaces

(d) The logistic, extreme value, Laplace and chi distributions on R, all with log-concave densities.

4. Markov category maps. Each convex space X comes with log-concave copying and discarding
channels which form a commutative comonoid

and are defined by x 7→ δ(x,x) and x 7→ 1 for all x, respectively. This makes LCon a Markov category
in the sense of [7]2. The presence of discarding tells us that marginals of log-concave channels are
again log-concave, which is well-known for log-concave measures.

5. Conceptual updates. Copying lets us turn any fuzzy concept C into an ‘update by C’ map, (left-hand
below) as well as point-wise multiply any pair of fuzzy concepts C,D.

C :: x 7→C(x)δx
C D :: x 7→C(x)D(x) (13)

6. Deterministic maps. Any partial affine map f : X → Y , meaning a crisp concept dom( f ) ⊆ X and
measurable affine map f : dom( f )→ Y , induces a log-concave channel f̂ : X → Y with f̂ (x) = δ f (x)

whenever f (x) is defined, and f̂ (x) = 0 otherwise. In Lemma 17 in the appendix we show these
are precisely the log-concave channels f which are crisp in that each f (x) is either zero or a point
measure. These crisp maps f are deterministic in the sense of Markov categories, satisfying

f f
=

f

7. Convolutions. For any pair of log-concave channels f ,g : X → Y between vector spaces we may
define their convolution f ?g as the log-concave channel

+

f g
(14)

where + is the monoid (x,y) 7→ x+ y. When interpreting f and g as sending each x ∈ X to a random
variable over Y , f ?g sends each element to the sum of these random variables.

8. Noisy maps. As a case of the previous example, given any (measurable) partial affine map f : X→Y ,
now viewed as a channel, and any state ν of Y , we can form a log-concave channel

+

f ν

(15)

which sends (x,A) 7→ ν(A− f (x)). If ν models ‘random noise’ over the space Y , then this channel
describes a random variable y = f x+ ν in terms of input x ∈ X . Considering spaces Rn and maps
(15) where f is linear and ν is a Gaussian (noise) probability measure yields the symmetric monoidal
category Gauss of Gaussian probability theory from [6]. Thus Gauss ↪→ LCon.

2More precisely, the subcategory of maps which preserve discarding form a Markov category.
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9. Channels from densities. Let X ,Y be convex measurable subsets of Rn,Rm respectively, and ρ : X×
Y → R≥0 be a measurable log-concave function such that

∫
Y ρ(x,y)dy ≤ 1 for each x ∈ X , where dy

denotes the Lebesgue measure on Y . Then we may define a log-concave channel by

f (x,A) =
∫

A
ρ(x,y)dy (16)

for each A ∈ ΣY . This follows from the usual the Prékopa-Leindler inequality in Rn (Lemma 19 in the
appendix). It would be interesting to find a converse to this result, analogous to that for states.

7 Toy Application: Reasoning in Food Space

In closing we demonstrate a toy example of conceptual reasoning in LCon, returning to our example of
‘food space’ F =C⊗T from Example 4 (7), based on [3]. As in that example, let us first define a crisp
concept Green = Bε

g of radius ε = 0.1 in C around pure green g = (0,1,0). We can extend this to a crisp
concept on the whole of F via

Green

F

:= Green

C T

In the same way we define crisp concepts ‘Yellow’, ‘Sweet’ and ‘Bitter’ on F .
Now suppose an agent wishes to learn the concept of ‘banana’ from a set of exemplars in F containing

a banana they conceptualise as yellow and sweet, as well as another they deem to be green and bitter.
They form a crisp concept B by taking the convex closure of these concepts

Banana

N

= Yellow

C

Sweet

T

∨ Green

C

Bitter

T

(17)

where C∨D =C∪D is the convex closure, the join in the partial inclusion order on crisp concepts of F .

Fuzzifying concepts Since they are uncertain about the definition of their new concept ‘banana’, the
agent may wish to replace their concept with a fuzzy one. They can convert all of their crisp concepts into
fuzzy ones using the ‘Gaussian fuzzification’ of Example 9 (3). For example, we define a fuzzification
‘banana’ of the crisp concept ‘Banana’ with variance σ2

Ba as

banana

F

:= NBanana
σBa

:: (c, t) 7→ e−
1

2σ2 dH((c,t),Banana)2

We define fuzzy concepts ‘green’, ‘yellow’, ‘bitter’ and ‘sweet’ via σG, σY ,σBi,σS,σBa similarly.

Combining fuzzy concepts We can combine any of our fuzzy concepts using the copying maps, as in
(13). For example, we can define a fuzzy concept ‘green banana’ as

green bananagreen banana
=

F F

:: x 7→ green(x)banana(x)

In Figure 2 we plot some examples of composite fuzzy concepts on the food space F .
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Figure 2:
Fuzzy concepts in food space, for differing variance parameters, plotted over the unit square [yellow,green]× [sweet,bitter]⊆F .

Decreasing variance increase the crispness of the concepts. Values range from dark blue (1) through green to white (0).

A taste-colour channel As a first example of conceptual reasoning beyond simply combining con-
cepts, we consider an example of a ‘metaphorical’ mapping between domains. Consider the channel
from tastes to colours defined by

banana

TC

C

‘tastes’ :=

C

T

where C is the uniform (Lebesgue) measure over C. This channel transforms any concept on colours
into one tastes via precomposition. For example we can interpret the concept of ‘tasting yellow’ as

‘tastes’

T

yellow
‘tastes yellow’

T

=
:: t 7→ 1

λ (C)

∫
c∈C

yellow(c)banana(c, t)dλ (c)

where λ denotes the Lebesgue measure on C. In future work it would be interesting to explore more
sophisticated examples of conceptual (log-concave) channels between conceptual (convex) spaces, in-
cluding those with a linguistic interpretation as metaphors. It would also be desirable to extend the
learning process (17) to give a ‘join’ on fuzzy concepts, rather than merely crisp ones.

References
[1] Janet Aisbett & Greg Gibbon (2001): A general formulation of conceptual spaces as a meso level represen-

tation. Artificial Intelligence 133(1-2), pp. 189–232.



S. Tull 13
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[7] Tobias Fritz, Tomáš Gonda, Paolo Perrone & Eigil Fjeldgren Rischel (2020): Representable Markov
Categories and Comparison of Statistical Experiments in Categorical Probability. arXiv preprint
arXiv:2010.07416.

[8] Peter Gärdenfors (1993): The emergence of meaning. Linguistics and Philosophy 16(3), pp. 285–309.

[9] Peter Gärdenfors (2004): Conceptual spaces: The geometry of thought. MIT press.

[10] Peter Gärdenfors (2014): The geometry of meaning: Semantics based on conceptual spaces. MIT press.

[11] Michele Giry (1982): A categorical approach to probability theory. In: Categorical aspects of topology and
analysis, Springer, pp. 68–85.

[12] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed & Alexander Lerchner (2016): beta-vae: Learning basic visual concepts with a constrained varia-
tional framework.

[13] Boaz Klartag & VD Milman (2005): Geometry of log-concave functions and measures. Geometriae Dedicata
112(1), pp. 169–182.

[14] F William Lawvere (1962): The category of probabilistic mappings. preprint.

[15] Martha Lewis & Jonathan Lawry (2016): Hierarchical conceptual spaces for concept combination. Artificial
Intelligence 237, pp. 204–227.

[16] Prakash Panangaden (1998): Probabilistic relations. School of Computer Science Research Reports-
University of Birmingham CSR, pp. 59–74.
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A Proofs

Proof of Lemma 3. If x = a+p b and y = a′+p b′ for a,a′ ∈ A,b,b′ ∈ B one may see straightforwardly
that, for any r ∈ [0,1], we have x+r y = â+(rp+(1−r)q) b̂ for some â ∈ A and b̂ ∈ B, using convexity of A
and B.

Proof of Theorem 8. We have already seen that log-concave functions satisfy all of these properties.
Conversely, suppose we have such a chosen set of functions C(X) on each convex space X . Fix a convex
space X and let C ∈ C(X), with x,y ∈ X and p ∈ [0,1]. We will show that

C(x+p y)≥C(x)pC(y)1−p (18)

so that C is log-concave. If either C(x) or C(y) is zero this is trivial, otherwise without loss of generality
suppose c := C(y)

C(x) < 1. Suppose that h : [0,1]→ [0,1] is a function satisfying
h(0) = λ

h(p) = λcp

h(1) = λc

(19)

for some λ ∈ (0,1), and such that C⊗ h is quasi-concave. Then by rescaling, for simplicity we may
assume λ = 1. Then we have

C(x+p x′)h(p)≥min{C(x)h(0),C(x′)h(1)}
= min{C(x),C(x′)c}=C(x)

Multiplying both sides by C(x′)
C(x)

1−p
then yields precisely (18).

Now suppose that C([0,1]) contains the exponential functions as above. Then h(x) = cx for x ∈ [0,1]
satisfies (19) and by assumption C⊗h ∈ C(X⊗ [0,1]), making it quasi-concave, and so we are done.

Next suppose instead that C([0,1]) contains the affine functions. To establish the result, we will
show for any p,c ∈ (0,1) that there exists a quadratic polynomial h with real roots satisfying (19), with
h([0,1]) ⊆ [0,1]. Then by rescaling further if necessary this means that we can write h(x) = q(x)r(x)
where q(x) = ax+b, r(y) = cy+d are affine functions [0,1]→ [0,1].

By assumption the function C⊗q⊗r : (x,y,z) 7→C(x)q(y)r(z) belongs to C(X⊗ [0,1]⊗ [0,1]), mak-
ing it quasi-concave. Since the map y 7→ (y,y) is affine, this means that C⊗ h : X ⊗ [0,1]→ [0,1] is
quasi-concave also, and we are done as before.

Finally we must verify that there exists such a quadratic polynomial h. Let d := cp−c−(1−c)(1−p)
p(1−p) and

define
g(x) = (1− c+dx)(1− x)+ c =−dx2 +(c+d−1)x+1

Then g(0) = 1, g(1) = c and g(p) = cp. Note that d is positive; after rearranging the numerator this is
equivalent to noting that

cp− c≥ 1− c− p+ cp

which holds since
p(c−1)≤ c−1≤ cp−1

Hence g has negative quadratic term, and so has two real roots, and since g(x) is strictly positive for
x = 0,1 these roots must lie outside of [0,1]. So we can write g(x) = k(x−a)(b− x) where a < 0,b > 1



S. Tull 15

and k > 0. Hence we have g(x) = Kq(x)q′(x) where q and q′ are affine functions [0,1]→ [0,1], for
appropriate positive scalar K. Thus h(x) = q(x)q′(x) is our desired function in C([0,1]), and we are
done.

Write PConv for the category of convex spaces and partial affine maps X → Y , with dom(g◦ f ) :=
f−1(dom(g)), and LConCr for the subcategory of crisp channels in LCon.

Lemma 17. There is an equivalence of categories PConv' LConCr.

Proof. Let f : X→Y be crisp in Prob, and define a partial function g : X Y with f (x) = δg(x) whenever
f (x) is defined. Then dom(g) = f (−,X)−1(1) is measurable, and for each M ∈ ΣY , f (−,M)−1(1) =
dom(g)∧ g−1(M) is measurable and so g is a measurable function on a measurable domain. Now log-
concavity is seen to be equivalent to the requirement that for all x,y ∈ dom(g) that

g(x) ∈ A,g(y) ∈ B =⇒ g(x+p y) ∈ A+p B (20)

Taking A = {g(x)},B = {g(y)} shows that x+p y ∈ dom(g) with g(x+p y) = g(x)+p g(y). Hence g
is a partial affine map with f = ĝ. Conversely, if f = ĝ for such a map then (20) is certainly satisfied and
measurability of g on its domain ensures that ĝ is a Markov kernel.

B LCon is well-defined and canonical

Let us work towards our proof that LCon is a well-defined monoidal subcategory of Prob. We begin by
recalling some basic results in measure theory. Let (X ,ΣX) be a measurable space and µ a measure on
it. We say that µ is σ -finite if X can be written as a countable union of sets Xi with µ(Xi)≤ ∞.

Proposition 18. Let (X ,ΣX ,µ) be a σ -finite measure space and f : X → R≥0 integrable. Then∫
f dµ =

∫
∞

0
µ( f−1(u,∞))du =

∫
∞

−∞

µ( f−1(ev,∞))evdv

where du,dv are each the Lebesgue measure on R.

Proof. The first equation is a well-known consequence of Fubini’s theorem, applied to the space X ×R.
For the second equation, we apply integral substitution with u = ev.

Next we recall the standard Prékopa-Leindler inequality on spaces Rn.

Lemma 19 (Prékopa-Leindler inequality, [17]). Let 0 < p < 1 and f ,g,h be non-negative bounded
measurable functions on Rn satisfying (7) for all x,y ∈ R. Then

∫
Rn

f (z)dz≥
(∫

Rn
f (x)dx

)p(∫
Rn

h(y)dy
)1−p

We now extend this result to the form of Theorem 13.

Proof of Theorem 13. First observe that if t, t ′ ∈ R with g(x)> et and h(y)> et ′ then

f (x+p y)≥ g(x)ph(y)1−p > (et)p(et ′)(1−p) = et+pt ′
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Hence we have
f−1(et+pt ′ ,∞)⊇ g−1(et ,∞)+p h−1(et ′ ,∞)

Now by assumption on the measures we have

µ( f−1(et+pt ′ ,∞))et+pt ′ ≥ ν(g−1(et ,∞))p
ω(h−1(et ′ ,∞))1−pet+pt ′

= (ν(g−1(et ,∞)) · et)p(ω(h−1(et ′ ,∞))et ′)1−p

for all t, t ′ ∈ R. Applying Proposition 18 with the one-dimensional form of the Prékopa-Leindler in-
equality (Lemma 19) we have∫

X
f dµ =

∫
∞

0
µ( f−1(ev,∞)) · evdv

≥
(∫

∞

−∞

ν(g−1(et ,∞)) · etdt
)p(∫ ∞

−∞

ω(h−1(et ′ ,∞)) · et ′dt ′
)1−p

=

(∫
X

gdν

)p(∫
X

hdω

)1−p

as required. For the final statement observe that if f ,g,h are quasi-concave then each subset r−1(et ,∞)
for r = f ,g,h will be convex.

Remark 20. The above provides an alternative proof of the usual Prékopa-Leindler inequality assuming
only its one-dimensional form and that the Lebesgue measure λ is log-concave. Typically however
the Prékopa-Leindler inequality is used to establish that λ is log-concave in the first place. It would
be interesting to explore whether Theorem 13 provides any novel applications of the Prékopa-Leindler
inequality to more general convex spaces.

We can now establish that log-concave channels are closed under composition.

Proof of Theorem 14. All identities and coherence isomorphisms are log-concave channels since they
are of the form of Lemma 17. Hence it suffices to show that for any log-concave f : X → Y , g : Y → Z
and any convex space W that the channel h := (g◦ f )⊗ idW : X ⊗W → Z⊗W is log-concave. From the
definition of Prob one may see that for all (x,w) ∈ X×W and measurable E ⊆ Z×W we have

h((x,w),E) =
∫

y∈Y
g(y,Ew)d f (x,y)

where Ew := {z ∈ Z | (z,w) ∈ E}.
Let x,y∈ X , w,w′ ∈W and p∈ (0,1). By definition the measures µ = f (x+p x′),ν = f (x),ω = f (x′)

are all finite and satisfy
f (x+p x′,C)≥ f (x,A)p f (x′,B)1−p

whenever A,B,C ∈ ΣY are convex with C⊆ A+p B. Now let D,E ⊆ Z×W be convex and measurable and
suppose that F := D+p E is measurable also. Then Dw, Ew′ will be convex also. Note that if (x,w) ∈ D
and (x′,w′) ∈ E then (x+p x′,w+p w′) ∈ F . Hence Fw+pw′ ⊇ Cw +p Dw′ . Since g is log-concave, we
conclude that for each y,y′ ∈ Y we have

g(y+p y′,Cw+pw′)≥ g(y+p y′,Aw +p Bw′)

≥ g(y,Aw)pg(y′,Bw′)1−p
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Noting also that g(,−Cw+pw′), g(−,Aw) and g(−,Bw) are all log-concave and hence quasi-concave func-
tions, we may apply the final statement of Theorem 13 with µ,ν ,ω as above to give

h((x+p x′,w+p w′),F) =
∫

y∈Y
g(y,Fw+pw′)d f (x+p x′,y)

≥
(∫

y∈Y
g(y,Dw)d f (x,y)

)p(∫
y∈Y

g(y,Ew′)d f (x′,y)
)1−p

= h((x,w),D)ph((x′,w′),E)1−p

Hence h is a log-concave channel as required.

Finally we prove that log concave channels are ‘canonical’ as we claim.

Proof of Theorem 15. Since C is a monoidal subcategory of Prob, all effects in C are measurable and
condition (2) of Theorem 8 holds. Hence by Theorem 8 we in fact have that (2) =⇒ (1).

We now show that (1) ensures that every f : X → Y in C is log-concave. Let A,B ∈ ΣY be convex.
Then defining C to be the set (9), by assumption 1C is an effect on Y × [0,1] in C. Hence the effect
D = 1C ◦ ( f ⊗ id) on X× [0,1] belongs to C also, and must be log-concave. Thus for any x,y ∈ X

f (x+p y,A+p B) = D(x,+py, p)≥ D(x,1)pD(y,0)1−p = f (x,A)p f (y,B)1−p

making f log-concave.
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