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1 Introduction

Categories of relations and their duals, corelations, arise in both pure and applied category theory. In physics,
relations play a role intermediate between the classical system of sets and functions and the fully quantum system
of Hilbert spaces and bounded operators [HV20]. Corelations are the prop for certain Frobenius monoids [CF16].
Corelations have been characterized as a pushout in the anaylsis of the semantics of string diagrams [FZ18]. Relations
have been described formally as “tabular allegories” [FS90] and also as “bicategories of relations” [CW87]. Recent
interest in bicategories of relations appears to be stage-setting for interpretations of regular logic [FS19].

Double categories [GP99], [GP04] give another formalization of relations. However, double categories incorporate
two types of morphisms on given objects related by cells. Sometimes these are special cells called “companions” or
“conjoints” which give certain restrictions and extensions in the double category. The double category of relations
incorporates both the classical structure of sets and the non-classical structure of the relational calculus. This
makes sense for any regular category C , resulting in a double category Rel(C ), or even for a cartesian category C
with a stable factorization system F = (E ,M), resulting in a double category Rel(C ;F).

The starting point is double categories of spans, which were characterized in [Ale18] as cartesian equipments
satisfying extra conditions: the external unit map is full, strong tabulators exist, and Eilenberg-Moore objects exist
for any copointed endomorphisms. Our question is: What are the conditions on an equipment or on a cartesian
equipment ensuring that it is equivalent to a double category of the form Rel(C )? Our work will show that
what distinguishes Rel(C ) from other cartesian equipments is essentially that so-called “tabulators” exist and are
inclusions; that the unit of the tabulator adjunction is invertible; that the domain of any inclusion is a tabulator;
and finally that a form of the Frobenius law holds for local products. Such double categories might be called
“relational double categories.”

Here are four potential applications.

1. Relational theories take their models in sets and relations [BPS17]. A characterization of double categories of
relations should provide a means to tell which double categories support a sound interpretation of relational
theories and provide a forum for a comparison of ordinary Lawvere theories and relational theories.

2. Descriptive logic is a main formalism for knowledge representation. However, bicategories of relations have
been proposed as an alternative [Pat17]. Insofar as there is need for a comparison of such knowledge rep-
resentation with other systems, double categories could provide an ambient structure. A characterization of
double categories of relations could isolate the extra structure on a double category giving the formalism of
knowledge representation and modeling interaction with other systems.

3. Any characterization of relations would afford a dual characterization of corelations, a topic of some recent
interest. For example in [FZ18], corelations are shown to be a certain pushout, leading to characterizations of
equivalence relations, partial equivalence relations, linear subspaces and others. Double categorical versions
of these result might lead to forums for comparing different levels of structure.

4. Monoidal bifibrations give rise to certain equipments [Shu08]. It is of interest to see which equipments support
an inverse construction. Our conjecture is that under such a correspondence double categories of relations
correspond to subobject bifibrations. If this is the case it would be a starting point for extending fibrational
semantics of type theories to interpretations in double categories with extra structure.

The following sections give an overview of some of our results. This is a report on ongoing work. Some material
is in progress and might be adjusted before coming into final form.
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2 Some Preliminary Observations

For any cartesian and cocartesian category C there is an oplax/lax adjunction Span(C ) � Cospan(C ) between
double categories of spans and cospans. One the one hand, a span is taken to the cospan given by its pushout;
and on the other, a cospan is taken to a pullback. Pushouts compute extensions in cospans and pullbacks compute
restrictions in spans. An equipment is a double category with all restrictions and extensions.

A double category D admits tabulators if there is a right adjoint > : D1 → D0 to the external identity functor
y : D0 → D1 coming with the structure of D. The tabulator replaces missing restrictions in D. That is, a bare
proarrow p : A −7−→ B has nothing to restrict along; taking its tabulator, however, gives a replacement with a similar
universal property. The theorem of Niefield [Nie12] is that the identity functor on cartesian D0 extends to a
normalized oplax/lax adjunction Span(C ) � D if, and only if, D is an equipment with tabulators.

Some initial work on relations follows this outline. Take D0 to be a regular category. Start from the observation
that the identity functor on D extends to an oplax/lax adjunction Rel(C ) � Corel(C ) provided that C is regular
and coregular. On the one hand, F sends a relation 〈d, c〉 : R → A × B to the extension of the codiagonal on R
in corelations along d and c. On the other hand, a corelation [p, q] : A + B → C is sent to the restriction of the
diagonal relation on C along p and q. For D in the place of corelations, tabulators replace extensions. Our first
result is that the identity functor on D0 extends to a normalized oplax/lax adjoint equivalence F : Rel(D0) � D : G
if, and only if,

1. D is an equipment and ye is an extension cell for each regular epimorphism e;

2. D has tabulators;

3. every proarrow p : A −7−→ B is an extension of its tabulator;

4. every relation R→ A×B is a tabulator of its canonical extension.

The first two conditions allow the definition of F and G. The last two conditions ensure that they form an adjoint
equivalance. A modified Beck-Chevalley condition is one ingredient in making this an adjoint equivalence of pseudo
double functors. However, the result is only a starting point: for asking that D0 is regular is cheating. Additionally,
it uses neither the cartesian axioms nor the Frobenius condition that characterizes bicategories of relations.

2.1 Inclusions and Covers

The condition on ye is one ingredient that makes the proof of the oplax/lax adjunction between relations and
corelations possible. It is precisely what makes F oplax. In Rel(C ) for regular C , it is certainly the case that all
such arrows produce extensions ye. Why? In a generic double category, an extension ξ of the unit on A along
e on both sides results in a globular cell from the cokernel of e to the unit γ : e∗ ⊗ e! ⇒ yE such that γξ = ye.
Extensions in Rel(C ) in particular are computed by images. Therefore, e is a regular epimorphism if, and only if it
computes the extension of yA. In other words, e is a regular epimorphism if, and only if, the unique globular cell γ
from the cokernel of e is an iso e∗ ⊗ e! ∼= yE . Thus, make the definitions: A morphism e : A→ E in an equipment
D is a cover if the canonical globular cell is an iso e∗ ⊗ e! ∼= yE . A morphism m : E → B is an inclusion if the
canonical globular cell from the kernel of m is an iso m! ⊗m∗ ∼= yE (Cf. [Sch15]). Further conditions on tabulators
and inclusions will make covers and inclusions into the two classes of an orthogonal factorization system on D0.

2.2 Cartesian Equipments

A double category is cartesian if the canonical functors ∆: D→ D×D and D→ 1 are pseudo double functors and
have right adjoints that are pseudo-double functors. A cartesian equipment is equivalent to a double category of
spans if, and only if, D is a “unit-pure” cartesian equipment that has certain Eilenberg-Moore objects for copointed
endomorphisms [Ale18]. In particular, this is the case if, and only if, the identity functor on D0 extends to an
equivalence of double categories Span(D0) ' D.

The existence of Eilenberg-Moore objects implies that of tabulators. Now, our view is that tabulators govern
the interaction between the two types of structure in a double category. Conditions on tabulators distinguish types
of double categories. These roughly fall into two types: profunctor-type and relation-type. In the former case, every
relation is its own tabulator; this is expressed by the fact that y : D0 → D1 is fully faithful. The legs of the morphism
are jointly monic; for allegories this is the condition φ = gf◦. Finally, the tabulator should replace the missing
image factorizations. Thus, owning to the centrality of this structure, our goal is to produce a characterization of
cartesian equipments with tabulators that are double categories of relations.
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3 Main Characterization

Require that the legs of the tabulator of any proarrow of D are jointly an inclusion; and that the unit of the
adjunction y a > is invertible. By the universal property of the tabulator there is a factorization of the cokernel of
a given morphism f :

A

∃ !e

��

y� // B

e

��

A

ξf

��

y� // B

f

��

>(f∗ ⊗ f!)

τl

��

y� // >(f∗ ⊗ f!)

r

��

=

B
f∗⊗f!

� // B B
f∗⊗f!

� // B

Since B presents the tabulator of yB , it follows that l = r. It turns out that e is a cover and l is an inclusion.
This will give an image factorization of f . Orthogonality of the two classes will follow by the fact that domains of
inclusions will be required to be tabulators of their cokernels (essentially, this is the fact that domains of ordinary
injective functions are isomorphic to their images).

The crucial ingredient leading to pullback-stability is a version of Frobenius reciprocity (cf. [nLa20]). For each
object B of a cartesian bicategory B there is an induced hyperdoctrine, valued in meet-semilattices

B(i, B) : Map(B)op → SLat

where i is the inclusion of so-called “maps” into B. The restatement of the Frobenius Law from [CW87] in this
context is the axiom

r ∧ qf◦ = (rf ∧ q)f◦.

Reinterpreting this law in the context of equipments with ()◦ = ()∗, there is the present version of Frobenius
Reciprocity for Cartesian Equipments:

r ∧ f∗ ⊗ q ∼= f∗ ⊗ (f! ⊗ r ∧ q) (3.1)

written in diagrammatic order where ‘∧’ denotes the local product as in [Ale18]. In particular, the first main result:

Theorem 3.1. With E the class of covers and M the class of inclusions, F = (E ,M) is a stable factorization
system on D0 and thus Rel(D0;F) is a double category.

Here is a proof sketch. First note that D0 has all pullbacks, given by the universal property of the tabulator.
Pullback-stability now follows. For let e : B → C denote a cover and hd = ce a pullback square. To see that d is a
cover, calculate that

y ∼= y ∧ d∗ ⊗ c! ⊗ c∗ ⊗ d! (technical lemma)
∼= d∗ ⊗ (d! ∧ c! ⊗ c∗ ⊗ d!) (Frobenius)
∼= d∗ ⊗ d! ∧ d! (c! ⊗ d∗ ⊗ d! ∼= d!)
∼= d∗ ⊗ d! (∧ idempotent)

In fact the double category Rel(D0;F) is a cartesian equipment satisfying Frobenius reciprocity. With this in hand,
modulo some details, a rough version of the main result is:

Theorem 3.2. Let D denote a cartesian equipment with tabulators. There is a stable factorization system F on
D0 such that the identity functor on D0 extends to an adjoint oplax/lax equivalence Rel(D0;F) ' D if, and only if,

1. the unit 1⇒ >y is fully faithful;

2. every tabulator is jointly an inclusion and the domain of each inclusion is the tabulator of its cokernel;

3. local products satisfy the Frobenius axiom.

As with the first oplax/lax adjunction, extensions in D provide the oplax functor and taking tabulators provides
the lax functor valued in relations. One question remains as to the precise role of Beck-Chevalley in making this a
strong adjoint equivalence of pseudo-double functors. But this is left for future work.
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[GP04] Marco Grandis and Robert Paré. Adjoints for double categories. Cahiers de Topologie et Géom. Diff.
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