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Abstract

We report past and ongoing efforts to compute (global) sections of cellu-
lar sheaves valued in categories of adjunctions. First, we discuss previous
work on sheaves valued in Ltc, the category of complete lattices and Galois
connections. Then, we survey ongoing efforts to generalize the fixed point
theorem (Theorem 1) to (i) CatAdj, the category of (sufficiently small) cat-
egories and adjunctions, and (ii) M-Adj, the category of ordered monoid
-enriched categories and adjunctions.

Cellular sheaves are sheaves with coeficients in a category D whose base
space is an Alexandrov space of a certain poset—a face relation poset—encoding
the gluing of cells in a cell complex X (vertices and edges in a graph, perhaps)
onto one another [1, 2]. If D is complete, a folk theorem (full proof is supplied
in [3]) is that the category of sheaves over the Alexandrov topology of a face
relation poset PX is equivalent to the category of functors and natural transfor-
mations,

[PX ,D].

One motivation for extending the theory of cellular sheaves beyond cate-
gories of vector spaces [1] and categories of inner product spaces [4] lies in
graph signal proccessing. Standard graph filtering techniques not only require
input signals to be collected in vector spaces with a homogeneous number of
features, but are unnameable to data types that are not vector-valued, such as
set-valued data types e.g. arising in semantics of multi-agent systems [5] or
recommendation systems [6].
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In this extended abstract, we consider cellular sheaves over a graph G =
(VG, EG) valued in a category of adjunctions, i.e. functors

F : PG → Adj

—for brevity, we narrow our focus to sheaves over graphs, but many of the
results readily generalize to sheaves over cell complexes. Previous work [7]
has addressed the particular case where Adj is Ltc, the category of lattices
and Galois connections. Objects of Ltc are complete lattices, i.e. posets that
are complete (limits denoted

∨
) in the categorical sense—and consequently

cocomplete (colimits denoted
∧

) [9, Theorem 2.2]. Morphisms in Ltc consist of
adjunctions (i.e. monotone Galois connections [8]) F q a F q between complete
lattices,

L −−−→←−−−
F qF
q

L′.

Adjunctions are composed in the usual way; the identitiy morphism is the
identity adjunction, 1L a 1L.

We summarize some key results of our work [7] as follows:

• We construct a Laplacian—the Tarksi Laplacian denoted L—associated
to a given sheaf

F : PG → Ltc

which acts as a diffusion operator on the (product) lattice of 0-cochians,

C0(G;F ) := ∏
v∈VG

F (v).

Explicitly, the Tarski Laplacian is an order-preserving map,

L : ∏
v∈VG

F (v)→ ∏
v∈VG

F (v),

(Lx)v =
∧

e∈δ(v)

(FvCe)
q  ∧

w∈∂(e)

(FwCe) q(xw)

 .

• Via the Tarski Laplacian, we show how to compute (guaranteeing exis-
tence gratis by invoking the Tarski Fixed Point Theorem [10]) a limit,

lim (F : PG → Sup) ,

(a complete lattice) whose elements are called sections. In order that sec-
tions exist, we pass to the category Sup of complete lattices and com-
pletely

∨
-preserving maps (continuous functors). The category Sup be-

ing complete [11], functors factoring through F , i.e. functors F

PG Ltc

Sup

F

F
Uleft ,
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into Sup, have all limits.1

• We prove the following fixed point theorem:

Theorem 1 ([7, Theorem 3.1]). Let F : PG → Ltc be a cellular sheaf over G.
Suppose F : PG → Sup is the functor Uleft ◦ F . Then,

limF = Post(L)

where Post(L) := Fix(L ∧ id) = {x ∈ C0(G;F ) : L(x) ≥ x}.

In work in progress, we seek to generalize the above results (especially the
fixed point theorem) for various choices of Adj.

1. Suppose Adj is the 2-category CatAdj, the category of (U-small) cate-
gories (for some Grothendiek universeU) and adjunctions (cf. [12]).

(a) A cellular stack over G is a functor C : PG → CatAdj.
(b) The Laplacian L is the endofunctor L : ∏v∈VG

C(v) → ∏v∈VG
C(v)

given by

(LX)v := ∏
e∈δ(v)

∏
w∈δ(e)

(FvCe)
q
(FwCe) q(Xw).

For convenience, we supply an additional endofunctor called the
parison functor2,

(∆X)v := ∏
e∈δ(v)

(FvCe)
q
(FvCe) q(Xv),

which—in Ltc coefficients—is the (point-wise) meet (∧) of expand-
ing maps.

(c) The following imitates Theorem 1.

Theorem 2. Suppose C is a cellular stack over G. Then, the category
Post(L) := { f : X → L(X) | µX ◦ L f ◦ f = ηX}—as in the following
commutative diagram3

X L(X) L2(X)

∆(X)

f

ηX

L f

µX

1Uleft is the functor that forgets right adjoints (remembers left adjoints) in Ltc. In slight abuse
of notation, we denote Uleft for the functor that forgets right adjoints in any category of categories
and adjunctions and F for postcomposition of some functor F in such a category with Uleft.

2A parison is an expanding bubble of glass formed in the process of glassblowing.
3ηX is the product of units

Xv
η−→ (FvCe)

q
(FvCe) q(Xv).

µX comes from the monads ((FvCe)
q
(FvCe) q, µvCe, ηvCe).
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—coincides with the 2-categorical limit

lim (C : PG → Cat) .

2. In an effort to (i) generalize Theorem 1 to weighted graphs and (ii) facil-
itate the notion of an approximate section (more on this [13, 4]), we look
to enriched category theory [14]. For the remainder of this extended ab-
stract, we explore network sheaves of categories and adjunctions for Adj
the categoryM-Adj of certain monoidal categories and monoidal adjunc-
tions.

(a) An ordered monid is a tupleM = (M, ·, 1,≤) for which (M, ·, 1) is a
monoid (small monoidal category) and (M,≤) is a partial order. An
M-category is a category enriched in M. An M-functor F between
M-categories is a 1-functor F : A → B such that

homA(x, x′) ≤ homB(F(x), F(x′))

for all x, x′ ∈ A. AnM-adjunction is a pair of opposingM-functors
A −−−→←−−−

F qF
q
B such that

homB(F q(x), y) = homA(x, F q
(y))

for all x ∈ A, y ∈ B. Now, let M-Adj denote the category of M-
categories andM-adjunctions.

(b) A cellularM-stack over G is a functor F : PG →M-Adj.
(c) Suppose W : PG → M is a weighting of G. Then, the weighted

Tarski Laplacian is the endomorphism on the product ofM-categories
(again, anM-category) ∏v∈G Fv,

(LX)v := ∏W
e∈∂(v)
w∈δ(e)

(FvCe)
q
(FwCe) q(Xw)

where the product is a limit (indexed or) weighted by W [14, p. 37].
(d) We end with another generalization of Theorem 1—again relating

sections to fixed points. In the special case,M is B = ({T, F},∧, 1,≤
), W(e) = 1 for all e ∈ EG, and m = 1, we recover Theorem 1 on the
nose. We specialize to closedM-categories4 with internal hom inM,

[a, b] :=
∨
{c | a · c ≤ b}.

Theorem 3. Let F : PG →M-Adj be cellularM-stack over G. Suppose
m ∈M. Then, hom(X, L(X)) ≥ m if and only if

[W(e), hom((FwCe) q(Xw), (FvCe) q(Xv))] ≥ m

for all e ∈ EG, v, w ∈ ∂(e).
4Examples of closed M-categories include categories enriched in B, the interval I =

([0, 1], ·, 1,≤), and Heyting algebras [15].
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