
Submitted to:
ACT 2021

© P. Wilson & F. Zanasi
This work is licensed under the
Creative Commons Attribution License.

The Cost of Compositionality
A High-Performance Implementation of String Diagram Composition

Paul Wilson
University of Southampton

paul@statusfailed.com

Fabio Zanasi
University College London

f.zanasi@ucl.ac.uk

String diagrams are an increasingly popular algebraic language for the analysis of graphical models
of computations across different research fields. Whereas string diagrams have been thoroughly
studied as semantic structures, much fewer attention has been given to their algorithmic properties,
and efficient implementations of diagrammatic reasoning are almost an unexplored subject.

This work intends to be a contribution in such direction. We introduce a data structure represent-
ing string diagrams in terms of adjacency matrices. This encoding has the key advantage of providing
simple and efficient algorithms for composition and tensor product of diagrams. We demonstrate its
effectiveness by showing that the complexity of the two operations is linear in the size of string dia-
grams. Also, as our approach is based on basic linear algebraic operations, we can take advantage of
heavily optimised implementations, which we use to measure performances of string diagrammatic
operations via several benchmarks.

1 Introduction

String diagrams are a ubiquitous graphical notation for depicting morphisms of a monoidal category, and
have been used in a variety of settings– see e.g. [3, 5, 6, 16] and [13] for an overview.

In order to work with string diagrams on a computer, we require a representation of them which we
can manipulate. Several such representations have been explored in the literature–see for example the
wiring diagrams of Catlab.jl [12], and the hypergraphs of [2] as used in CARTOGRAPHER [15].

However, to support ‘industrial scale’ uses of string diagrams where modelisations are very large,
there is a pressing need to ensure that operations for combining these structures are efficient. In this work,
we define a string diagram representation inspired by the parallel programming literature (specifically
[8, 14]). Our data structure of choice is based on sparse adjacency matrices representing hypergraphs,
and thus we call it HAR - hypergraph adjacency representation. We shall show how to encode string
diagrams into HARs, using their characterisation as hypergraphs (from [2]) as intermediate steps. The
following picture summarises the various steps of the encoding:

String Diagram Hypergraph with Interfaces Bipartite Graph with Interfaces Har

Asbtract Concrete

The main point of this implementation is that the encoding allows for simple algorithms for compo-
sition and tensor product. Composition is especially simplified, being completely expressible in terms of
permutation and tensor product operations on matrices (see Definition 4.1 below).

Furthermore, the algorithms we describe are completely in terms of linear-algebraic operations on
matrices. Since highly optimised implementations of such operations are widely available, this makes
our approach straightforward to implement while providing good performance. Additionally, since im-
plementations of linear algebra routines are also available for specialised parallel hardware such as GPUs,
our algorithms require little additional effort to support such settings.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 The Cost of Compositionality

Importantly, we also show that the operations of composition and tensor product for our representa-
tion have linear complexity, a fact which we support with empirical validation on synthetic benchmarks.

We summarise our main contributions are as follows:

• An isomorphic representation of string diagrams in terms of adjacency matrices of certain graphs

• Algorithms for tensoring and composition of string diagrams (via their representation)

• Computational complexity bounds for tensor and composition algorithms

• An empirical analysis of the performance of our approach

The structure of the paper is as follows. In Section 2 we recall the directed hypergraphs of [2] and
discuss a bipartite encoding of undirected hypergraphs from the parallel processing literature [8]. In
Section 3 we formally describe our proposed encoding of hypergraphs in terms of adjacency matrices.
We then proceed in section 4 to describe operations such as composition and tensor product for our
encoding, before showing that these form a symmetric monoidal category, which is isomorphic to the
original category of string diagrams, in Section 5. Finally, in Section 6 we discuss complexity of the
operations described in section 4, and show empirical performance results on some synthetic benchmarks
in section 7.

2 Background

2.1 Hypergraphs with Interfaces

Following [2], we will regard string diagrams combinatorially as a certain class of hypergraphs, which we
now recall. Throughout this section we fix a monoidal signature Σ, that is, a set of operations o : n→ m,
where n is the arity and m the coarity of o.

Hypergraphs are a generalisation of directed graphs where edges (ordered pairs of vertices) are re-
placed by hyperedges (ordered lists of vertices). As shown in [2], hypergraphs serve as a characterisation
of string diagrams over Σ when equipped with the following features: (i) a labelling of hyperedges with
Σ-operations; (ii) the identification of a left and a right interface of the hypergraph; (iii) the restriction to
hypergraphs with interfaces that are monogamous. We recall the relevant definitions below.

Definition 2.1. A Σ-labeled (directed) hypergraph H is a triple (V,E,L), where V is a set of nodes,
E ⊆ List(V)×List(V) is a set of hyperedges, and L : E → Σ is a labeling function, where the arity and
coarity of L(e) must agree with the length of lists e #π0 and e #π1 respectively, for each e ∈ E. A node v is
a source of e ∈ E if it appears in the list e #π0, and a target if it appears in e #π1. Σ-labeled hypergraphs
with the evident structure-preserving morphisms form a category HypΣ.

A Σ-labeled hypergraph with interfaces is a cospan n
f−→ G

g←− m in HypΣ, where n and m are the
discrete hypergraphs constiting of n and m nodes respectively. We call f [n] the left interface of G and
g[m] the right interface of G. We write Csp(Hyp

Σ
)I for the PROP1whose morphisms n→ m are the

hypergraph with interfaces n
f−→ G

g←− m. Composition is defined by pushout2. The notation is due to
Csp(Hyp

Σ
)I being a subcategory of the category of cospans in HypΣ.

1PROPs [9] are symmetric monoidal categories with objects the natural numbers. They are widely adopted as a way to
express categorically algebraic theories of string diagrams.

2In order for composition to be uniquely defined, strictly speaking morphisms of Csp(Hyp
Σ
)I should be equivalence classes

of hypergraphs with interfaces, where n −→ G←− m and n −→ G′ ←− m are equivalent when there is a isomorphism G→ G′

commuting with the cospan legs. For the sake of simplicity, we shall use representatives of such equivalence classes when
working with morphisms of Csp(Hyp

Σ
)I . This does not have any consequence for the theory developed in the rest of the paper.

P. Wilson & F. Zanasi 3

Σ-labeled hypergraphs with interfaces serve as a faithful interpretation for the PROP FreeΣ whose
morphisms are freely generated by the signature Σ [2]. For example, the string diagram c : 2→ 2 in

FreeΣ as on the left below is interpreted as the hypergraph with interfaces 2
f−→ G

g←− 2 on the right.

α

β

γ
α

β

γ

(1)

Note Σ-operations α : 1→ 1, β : 1→ 2 and γ : 2→ 1 appearing in c are mapped to hyperedges with the
appropriate number of source and target nodes, and the ‘dangling wires’ of c are expressed by the left

and right interfaces 2
f−→ G and 2

g−→ G, depicted as dashed arrows.
Although this interpretation is faithful, it is not full — there are hypergraphs not representing any

string diagram [2]. One may achieve a full interpretation by restricting to monogamous acyclic hyper-
graphs with interfaces.

Before recalling the definition of monogamous, we need to record a few preliminaries. The in-degree
(respectively, out-degree) of a node v in an hypergraph G is the number of hyperedges having v as target
(source). Write in(G) (inputs) for the set of nodes with in-degree 0 and out(G) (outputs) for the set of
nodes with out-degree 0.

Definition 2.2. An hypergraph G is monogamous acyclic (ma-hypergraph) if it contains no cycle (acyclic-
ity) and every node has at most in- and out-degree 1 (monogamy).

A hypergraph with interfaces n
f−→G

g←−m is monogamous acyclic when G is an ma-hypergraph, f is
a monomorphism and its image is in(G), g is a monomorphism and its image is out(G). Ma-hypergraphs
with interfaces form a sub-PROP Csp(Hyp

Σ
)MI of Csp(Hyp

Σ
)I.

Ma-hypergraphs with interfaces are in 1-to-1 correspondence with string diagrams over the same
signature, yielding the isomorphism FreeΣ

∼= Csp(Hyp
Σ
)MI [2].

2.2 Parallel Hypergraph Processing

Hypergraphs have many choices of implementation as a data structure. For example, one might choose
to model hyperedges directly as pairs of lists. However, the code for such representations must be written
from scratch, and can typically be complicated and error-prone. Instead, we would like to take advantage
of existing, high performance code for representing graphs, and apply it to hypergraphs. To this end, we
take inspiration from the parallel programming literature.

The authors of [8] describe a distributed processing system for undirected hypergraphs.

Definition 2.3. An undirected hypergraph U is a pair (V,E) where V is a set of nodes, and E ⊆P(V)\ /0
is a set of hyperedges.

Analogously, this definition is a generalisation of the notion of undirected graphs: where an edge is
an unordered pair of vertices, so a hyperedge is a set of vertices.

In order to achieve high performance, the authors define an encoding of their undirected hypergraphs
as labeled bipartite graphs. Concretely, vertices are labeled either • or ◦, with •-vertices playing the role
of hypernodes, and ◦-vertices playing the role of hyperedges. For example, the bipartite graph below

4 The Cost of Compositionality

depicts such an encoding, where and an edge • → ◦ indicates that the source hypernode appears in the
hyperedge set.

(2)

However, since this encoding is specific to the undirected hypergraphs of [8], we must adapt it to suit
our purposes.

2.3 PROPs of Matrices

We denote the PROP of matrices over a semiring S by MatS, where the tensor product f ⊗ g is the

direct sum, i.e.:
∣∣∣∣ f 0
0 g

∣∣∣∣. In this paper, we will only consider matrices over the semirings of booleans

B and natural numbers N. We denote the m× n zero matrix as 0n,m, dropping the subscripts where
unambiguous. We refer to the set of m× n matrices as MatS(n,m), and note that we always write

composition in diagrammatic order: that is, for composition n
f→ m

g→ l we always write f #g.

2.4 Adjacency Matrices

The adjacency matrix representation of a graph is central to our representation of hypergraphs, and so
we recall it now. The adjacency matrix of a K-node directed graph is a matrix MatB(K,K) where the ith

column denotes the outgoing edges of the ith node. For example, consider the graph and its adjacency
matrix below:

• •

•

•

∣∣∣∣∣∣∣∣
0 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣∣ (3)

Note that in this particular representation, there can be exactly one edge between two nodes of the
graph. We can also introduce labeled edges by varying the semiring of Mat: for example, by considering
matrices MatN(K,K) we can consider edges to have labels in the set {1,2, . . .}, with 0 denoting no edge.
Consider for example the same graph as (3) but with labeled edges:

• •

•

•

8

2

4 ∣∣∣∣∣∣∣∣
0 0 0 0
8 0 0 0
2 0 0 0
0 4 0 0

∣∣∣∣∣∣∣∣ (4)

3 Hypergraph Adjacency Representation

In this section we provide the main technical definition of the paper: the notion of Hypergraph Adjacency
Representation (HAR). We begin by providing a roadmap to the formal definition. In a nutshell, the main

P. Wilson & F. Zanasi 5

hurdle is to adapt the approach to undirected hypergraphs in [8] (reported in Section 2.2) to (directed)
hypergraphs with interfaces. This will provide us a means of representing hypergraphs with interfaces as
bipartite graphs, and thus as the corresponding adjacency matrices. As string diagrams can be identified
as a certain class of hypergraphs with interfaces, this methodology will yield an implementation of string
diagrams as adjacency matrices.

Before delving in the formal definition, the approach is best illustrated via an example. Recall the
string diagram in (1) (below left) with its interpretation as an hypergraph with interfaces (below center).
Its bipartite graph encoding is displayed below right.

α

β

γ
α

β

γ
α

β

γ

1

1
1

2

21

1

1

(5)

Note this is similar to the bipartite graph encoding shown in (2), as made evident when we rearrange the
bipartite graph of (5) as follows:

α β γ

1 1
1

2

21

1

1

1 (6)

The differences are (i) the presence of interfaces (needed because we are interested in composing these
structures), (ii) the labeling of ◦-vertices with Σ-operations, and (iii) the labeling of edges with natural
numbers. The latter information indicates the position, in the original hypergraph with interfaces, of
a node in the source/target lists of an hyperedge. For instance, the edge labeled with 2 indicates that,
in the original hypergraph, the target node of hyperedge α is in second position in the source list of
hyperedge γ .

The next step is translating this bipartite graph into an adjacency matrix (along the lines of Sec-
tion 2.4), together with information on what are the interfaces of the graph. This leads us to the data
structure called HAR: a 4-tuple (M,L,R,N), with M serving double-duty as the adjacency matrix and
edge-label data, N a vector of node labels, and L and R permutation matrices reordering M so that left
boundary nodes are first and right boundary nodes last, respectively. Returning to our example hyper-
graph in (5), we represent it with the following data (in which we write N twice for clarity):

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 2 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

•
•
α

β

•
•
γ

•
•

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
L = id9 R =

∣∣∣∣id7 0
0 σ1,1

∣∣∣∣

N =
∣∣• • α β • • γ • •

∣∣

6 The Cost of Compositionality

We can read the columns of M as the outgoing edges for a particular node. See for example the
column for β , which has two outgoing edges labeled 1 and 2, both of which connect to nodes labeled •.
Note that L is the identity matrix: this means that the left interface nodes appear first, and moreover they
appear in the same order as in the interface. Hence, the first 2 rows contain only zeros because the left
interface nodes have no incoming edges. On the other hand R is the block matrix

∣∣∣id 0
0 σ

∣∣∣ and so while
the final two nodes are the right interface nodes, their order in the interface is swapped.

3.1 Main Definition

We can now give our main definition–for background on matrix notation see Section 2.3.

Definition 3.1. (Hypergraph Adjacency Representation)
Fix a monoidal signature Σ. A hypergraph adjacency representation of type n→m is written Harn,m and
consists of the following data:

- Size K ∈ N
- Labeled Adjacency Matrix M ∈MatN(K,K)

- Left Permutation L ∈MatB(K,K)

- Right Permutation R ∈MatB(K,K)

- Node Labels N ∈ ({•}+({◦}×Σ))K

Satisfying the following conditions:

- The graph represented by M is acyclic

- The matrix LT #M #L is ordered such that the first m nodes are the left interface nodes

- The matrix RT #M #R is ordered such that the last n nodes are the right interface nodes

- If a node labeled • is not an interface node, then it has exactly one incoming and outgoing edge.

- For each vertex v labeled (◦,g) with g having arity/coarity m,n,

- v has incoming edges e1 . . .em with labels 1 . . .m respectively
- v has outgoing edges e1 . . .en with labels 1 . . .n respectively

3.2 Permutation Equivalence and Boundary Orderings

In Section 4 we will see that composition of Hars is only associative up to isomorphism. Therefore, in
order to form a category of Hars, we will quotient by the following equivalence relation3 which equates
Hars having isomorphic graphs.

Definition 3.2 (Permutation Equivalence). f ,g : Harn,m are equivalent up to permutation P, denoted

f P∼ g, when P is a permutation matrix such that the following conditions hold:

gM = PT # fM #P gL = PT # fL gR = PT # fR gN = fN #P

Remark 3.3. Note that this definition ensures that if f P∼ g then gM is a graph isomorphic to fM and also
that the interfaces of f and g are the same.

3We could take the alternative perspective that Har forms a weak 2-category with permutation matrices as 2-cells, but we
will take the equivalence relation perspective to simplify our presentation.

P. Wilson & F. Zanasi 7

Proposition 3.4 (Permutation Equivalence is an Equivalence Relation). Fix some f ,g ∈ Harn,m. Let ∼
denote the equivalence relation where f ∼ g iff there exists some permutation matrix P ∈MatB(K,K)
such that f and g are equivalent up to permutation P.

Proof. Clearly ∼ is reflexive because f id∼ f . Further, it is symmetric because if f P∼ g, then g PT

∼ f .

Finally, transitivity follows from matrix composition: If f P∼ g and g
Q∼ h, then f

P#Q∼ h.

This definition means that each f : Harn,m can be put into an equivalent left (resp. right) boundary
order by permuting by fL (resp. fR). We will make heavy use of these particular permutations in defining
composition and tensor product, so we define them explicitly.

Definition 3.5. The left boundary order of f ∈ Harn,m is denoted L(f) and has the following data:

L(f)M = f T
L # fM # fL L(f)L = id fK L(f)R = f T

L # fR L(f)N = fN # fL

Definition 3.6. The right boundary order of f ∈ Harn,m is denoted R(f) and has the following data:

R(f)M = f T
R # fM # fR R(f)L = f T

R # fL R(f)R = id fK R(f)N = fN # fR

Remark 3.7. Note that by definition L(f)
fL∼ f and vice-versa, R(f)

fR∼ f .

4 Operations on Hars

The main motivation for introducing Har is providing an efficient implementation for composing string
diagrams. To this aim, in this section we define the operations for constructing and combining Hars.
These developments will also allow us to prove that Hars form a category, in the next section.

Definition 4.1.

• The identity Harn,n is (0n,n, idn, idn,0n,1).

• The symmetry σn,m : n⊗m→ m⊗n is (0n,n, idn,P,0n,1) where P is the block matrix
∣∣∣ 0 idm
idn 0

∣∣∣.
• Given an operation g : n→ m ∈ Σ, the ‘singleton’4Har is given by (M, idK , idK ,N), with size K =

n+m+1, node labels N = (01,n,1,01,m) And M the block matrix
∣∣∣∣0 0 0
S 0 0
0 T 0

∣∣∣∣, where S ∈MatN(1,n)

is the row vector (1,2, . . . ,n) and T ∈MatN(m,1) the column vector (1,2, . . . ,m).

• Let f : n1→ m1 and g : n2→ m2 be Hars. The tensor product f ⊗g is component-wise as follows.

(f⊗g)M =
fM

gM

fK fK

gK gK

(f⊗g)L =
fL

gL

fK
n1

gK

n2

fK−n1
gK−n2

(f⊗g)R =
fR

gR

fK

m1gK m2

fK−m1
gK−m2

with (f ⊗g)N given by appending fN and gN , i.e., the block vector (fN gN).

4The name ‘singleton’ refers to the fact that such a Har contains a single generator. We choose this name based on its
common usage in Haskell libraries for a function creating a datastructure (e.g. a set) with a single element.

8 The Cost of Compositionality

• Let f : n→ m and g : m→ l be Hars. Composition is defined component-wise as follows:

(f #g)M =
R(f)M

fK−m fK

L(g)M gK−mgK

(f #g)L =
R(f)LfK fK

gK−m gK−m
(f #g)R =

L(g)R

fK−m fK−m

gK gK

with (f # g)N given by appending R(f)N and L(g)N(b :), where x(b :) denotes all but the first b
elements of the array x. Alternatively, one may regard (f # g)N as a diagonal matrix, and define
composition as for (f #g)M.

5 Adequacy of the Har-Implementation

In this section we show how the interpretation of string diagrams as Hars can be described as a full and
faithful functor between PROPs, meaning that our implementation is actually a 1-to-1 correspondence.
As a preliminary step, we need to show how Hars form a category.

Proposition 5.1. There is a PROP HarΣ whose morphisms n→ m are equivalence classes of values
Harn,m under the equivalence relation ∼, and identity, symmetries, composition and tensor product are
as defined in Section 4.

Proof. We give a graphical proof that composition is assocative up to permutation in Appendix A.6. It
is straightforward to check that f # id = f , and similarly one can check that σ # σ

σ∼ id. Finally, one can
see that the tensor product is associative essentially because the direct sum is.

Definition 5.2. Let J·K : FreeΣ→ HarΣ be the identity-on-objects symmetric monoidal functor freely ob-
tained by the mapping of operations g ∈ Σ to singleton Hars, as defined in Section 4.

Proposition 5.3. J·K : FreeΣ→ HarΣ is an isomorphism of PROPs.

We now give a sketch of our proof, leaving the full details to appendix B.

Proof. Thanks to Proposition B.6, it suffices to show that:

- There is a symmetric monoidal functor 〈·〉 : HarΣ→ FreeΣ,

- HarΣ is generated by the singleton Hars corresponding to the operations g ∈ Σ, and

- 〈JgK〉= g for g ∈ Σ.

Essentially, the idea is to show that HarΣ is just a ‘relabeling of generators’ of FreeΣ.

6 Complexity

We now give the time complexity of the composition and tensor product operations defined in Section 4.
We give empirical results to validate our claims in Section 7.

Naively, since our algorithm is expressed in terms of matrix multiplication, it should have a time
complexity of at best O(n2.3728596) (at time of writing [1]). However, we can do significantly better by
exploiting the high degree of sparsity of the matrices of a Har.

Concretely, observe that for a finite monoidal signature Σ and f ∈ Har(n,m), one can guarantee that
the number of non-zero elements in fM is O(fK):

P. Wilson & F. Zanasi 9

Proposition 6.1. (Bounded sparsity)
Fix a finite monoidal signature Σ and f : Har(n,m). Let m be the largest arity of any generator g ∈ Σ

and n the largest coarity. Then the rows of fM have at most m non-zero elements, the columns at most n
non-zero elements, and fM has O(fK) non-zero elements.

Proof. By definition 3.1, each vertex v in the graph represented by fM must have exactly m incoming
and n outgoing edges. These edges correspond to the non-zero rows and columns of fM, respectively,
and so the non-zero elements of each row (resp. column) is at most m (resp. n).

Now, it happens that the time complexity of the ‘naive’ sparse matrix multiplication algorithm [7] is
essentially linear in the number of non-trivial multiplications required–that is, those scalar multiplica-
tions where either multiplicand is zero. From this fact and the property of bounded sparsity, it follows
that both composition and tensor product of Hars are linear-time operations. To make this clear, we
introduce the following proposition:

Proposition 6.2. (Permutation of Har has linear complexity)
Choose some f ∈ HarΣ and a permutation matrix P ∈ Mat(fK , fK). Then P # fM and fM # P can be

computed in linear time.

Proof. For matrices A,B ∈ Har(k,k), the complexity of Gustavson’s sparse matrix multiplication rou-
tine [7] is O(2k+nnz(A)+m). Here nnz(A) is the number of non-zero entries of A and m is the number
of non-trivial multiplications required.

By the bounded sparsity property (Proposition 6.1), one can see that computing a row of the matrix
fM #P requires only a constant number of non-trivial multiplications, and further nnz(fM) is O(fK). Thus,
computing fM #P is O(fK).

Alternatively, one may also see that linear complexity is possible using Gustavson’s HALFPERM al-
gorithm [7], which can compute P # fM # QT in O(nnz(fM)) operations. Since nnz(fM) is O(fK), this
operation has linear complexity.

Using proposition 6.2 we can now show that composition and tensor product have linear time com-
plexity.

Proposition 6.3. (Tensor Product of Hars f ⊗g is O(fK +gK))
Given f ∈ Har(n1,m1) and g ∈ Har(n2,m2), computation of f ⊗g is O(fK +gK).

Proof. It is clear from definition 3.1 that each component of f ⊗g is computed either as a direct sum or
a multiplication of permutation matrices of size fK +gK . Since each of these operations is O(fK +gK),
it is clear that the whole operation is also.

Proposition 6.4. (Composition of Hars f #g is O(fK +gK))
Given f ∈ Har(n,m) and g ∈ Har(m, l), computation of f #g is O(fK +gK).

Proof. The proof is similar to that of Proposition 6.3, except that we must include the cost of the oper-
ations R(f) and L(g). These operations are linear by proposition 6.2, and so the composition f # g must
also be O(fK +gK).

10 The Cost of Compositionality

7 Empirical Results

We now give an empirical evaluation of our complexity claims on several synthetic benchmarks. We
compare our own implementation to the wiring diagrams of Catlab.jl [11, 12]5 Both our implementa-
tion and benchmarking code are available on GitHub at https://github.com/statusfailed/cartographer-har.

In the following benchmarks we use a fixed monoidal signature based on the finite presentation
of boolean circuits described in [10]. We choose boolean circuits since they are a real-world applica-
tion of string diagrams in which string diagrams would typically be very large. For example, a string-
diagrammatic representation of a CPU would need (at least) hundreds of thousands of generators. In
particular, our benchmarks use the following generators:

Σ = {COPY : 1→ 2 XOR : 2→ 1 AND : 2→ 1 NOT : 1→ 1}

Experiment Details Each benchmark has the same structure: for k ∈ {1 . . .20} we construct two string
diagrams consisting of 2k−1 generators, and then measure tensor product or composition of those dia-
grams. We repeat each measurement 10 times for each k and plot the mean with minimum and maximum
error bars. Further, if a result takes longer than 60 seconds to compute, it is omitted. More details of our
experimental setup can be found in Appendix C.

Note carefully that the performance chart for each benchmark uses a log scale on both axes, since for
each k we construct a string diagram of size 2k.

7.1 Benchmark #1: Repeated Tensor

We first measure the performance of the tensor product of large representations. Concretely, let f be the
k-fold tensor product of AND, i.e. f = AND⊗ k. . .⊗AND. We measure the performance of computing
f ⊗ f .

1e1 1e3 1e5

Size of result (number of generators)

0.01

0.1

1

10

R
un

tim
e

(s
ec

on
ds

)

implementation
Catlab

Sparse HAR

Tensor

5Note however that Catlab’s wiring diagrams provide a strictly more general setting than ours. We discuss possible gener-
alisations of our approach to address this in Section 8.

https://github.com/statusfailed/cartographer-har

P. Wilson & F. Zanasi 11

7.2 Benchmark #2: Small-Boundary Composition

We measure the performance of composition n
f→ m

g→ l along a small shared boundary, i.e., where
m� fK + gK . Concretely, let f be the k-fold composition of NOT, so that f = NOT # k. . . #NOT. We
measure the performance of computing f # f .

1e1 1e3 1e5

Size of result (number of generators)

0.01

1

100

R
un

tim
e

(s
ec

on
ds

)

implementation
Catlab

Sparse HAR

Small Boundary Composition

7.3 Benchmark #3: Large-Boundary Composition

We measure the performance of composition n
f→ m

g→ l along a large shared boundary, i.e. where
m≈min(fK ,gK). In particular, let f be the k-fold tensor product of NOT, then we measure f # f .

1e1 1e3 1e5

Size of result (number of generators)

0.001

0.01

0.1

1

10

R
un

tim
e

(s
ec

on
ds

)

implementation
Catlab

Sparse HAR

Large Boundary Composition

12 The Cost of Compositionality

7.4 Benchmark #4: Synthetic Benchmark

We give a final benchmark as a validity check to ensure our implementation still performs well on
realistic-looking representations. Specifically, we measure the performance of composing two a 2k−1-bit
adder circuits to form a 2k-bit adder.

1e2 1e4 1e6

Size of result (number of generators)

0.01

0.1

1

10

R
un

tim
e

(s
ec

on
ds

)

Synthetic

8 Discussion & Future Work

We consider our work a step towards a set of high-performance algorithms for manipulating string dia-
grams, but naturally a number of avenues for improvement remain.

Most obviously, it remains to explore algorithms for matching and rewriting, which are necessary to
support applications like a string-diagrammatic proof assistant. Perhaps less obviously, we would also
like to study algorithms for evaluating circuit diagrams: this can be useful for e.g., simulating a boolean
circuit or writing an interpreter for a programming language whose syntax is based on SMCs.

There are also several optimizations that could be made to our current algorithm. Firstly, we rep-
resent permutations as matrices, but a more efficient approach could be to use dense vectors of indices.
However, this would require the implementor to have access to a function like the HALFPERM algorithm
of [7].

Finally, several generalisations may be possible. Most useful would be to generalise to arbitrary
symmetric monoidal syntax rather than just PROPs. Secondly, by modifying our representation slightly,
we could account for arbitrary hypergraphs with interfaces — although we also believe this would affect
the complexity bounds.

P. Wilson & F. Zanasi 13

References

[1] Josh Alman & Virginia Vassilevska Williams (2020): A Refined Laser Method and Faster Matrix Multiplica-
tion.

[2] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński & Fabio Zanasi (2016): Rewriting
modulo symmetric monoidal structure. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, doi:10.1145/2933575.2935316. Available at http://dx.doi.org/10.1145/2933575.
2935316.

[3] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.

[4] Lucas Dixon & Aleks Kissinger (2010): Open Graphs and Monoidal Theories.

[5] Fabrizio Genovese & Jelle Herold (2021): A Categorical Semantics for Hierarchical Petri Nets.

[6] Fabrizio Romano Genovese, Fosco Loregian & Daniele Palombi (2021): Nets with Mana: A Framework for
Chemical Reaction Modelling.

[7] Fred G. Gustavson (1978): Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Trans-
position. ACM Trans. Math. Softw. 4(3), p. 250–269, doi:10.1145/355791.355796. Available at https:
//doi.org/10.1145/355791.355796.

[8] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khandelwal, Corey Tesdahl & Abhishek Chandra
(2019): MESH: A Flexible Distributed Hypergraph Processing System.

[9] Stephen Lack (2004): Composing PROPs. Theory and Applications of Categories 13(9), pp. 147–163.

[10] Yves Lafont (2003): Towards an algebraic theory of Boolean circuits. Journal of Pure and Applied Algebra
184(2-3), pp. 257–310, doi:10.1016/S0022-4049(03)00069-0.

[11] Evan Patterson, Andrew Baas, James Fairbanks, Micah Halter, Sophie Libkind & Owen Lynch (2020):
Catlab.jl: A framework for applied category theory. doi:10.17605/OSF.IO/HMNFE. Available at https:
//osf.io/hmnfe/. Publisher: OSF.

[12] Evan Patterson, David I. Spivak & Dmitry Vagner (2020): Wiring diagrams as normal forms for computing
in symmetric monoidal categories. In: Proceedings of the 2020 Applied Category Theory Conference.

[13] Peter Selinger (2010): A survey of graphical languages for monoidal categories. arXiv:0908.3347 [math]
813, pp. 289–355, doi:10.1007/978-3-642-12821-9-4.

[14] Julian Shun (2020): Practical Parallel Hypergraph Algorithms. In: Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’20, Association for Computing
Machinery, New York, NY, USA, p. 232–249, doi:10.1145/3332466.3374527. Available at https://doi.
org/10.1145/3332466.3374527.

[15] Pawel Sobocinski, Paul W. Wilson & Fabio Zanasi (2019): CARTOGRAPHER: A Tool for String Di-
agrammatic Reasoning (Tool Paper). In Markus Roggenbach & Ana Sokolova, editors: 8th Confer-
ence on Algebra and Coalgebra in Computer Science (CALCO 2019), Leibniz International Proceed-
ings in Informatics (LIPIcs) 139, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
pp. 20:1–20:7, doi:10.4230/LIPIcs.CALCO.2019.20. Available at http://drops.dagstuhl.de/opus/
volltexte/2019/11448.

[16] David I. Spivak (2020): Poly: An abundant categorical setting for mode-dependent dynamics.

[17] Raphael Yuster & Uri Zwick (2005): Fast Sparse Matrix Multiplication. ACM Trans. Algorithms 1(1), p.
2–13, doi:10.1145/1077464.1077466. Available at https://doi.org/10.1145/1077464.1077466.

http://dx.doi.org/10.1145/2933575.2935316
http://dx.doi.org/10.1145/2933575.2935316
http://dx.doi.org/10.1145/2933575.2935316
http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.1145/355791.355796
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/355791.355796
http://dx.doi.org/10.1016/S0022-4049(03)00069-0
http://dx.doi.org/10.17605/OSF.IO/HMNFE
https://osf.io/hmnfe/
https://osf.io/hmnfe/
https://arxiv.org/abs/0908.3347
http://dx.doi.org/10.1007/978-3-642-12821-9-4
http://dx.doi.org/10.1145/3332466.3374527
https://doi.org/10.1145/3332466.3374527
https://doi.org/10.1145/3332466.3374527
http://dx.doi.org/10.4230/LIPIcs.CALCO.2019.20
http://drops.dagstuhl.de/opus/volltexte/2019/11448
http://drops.dagstuhl.de/opus/volltexte/2019/11448
http://dx.doi.org/10.1145/1077464.1077466
https://doi.org/10.1145/1077464.1077466

14 The Cost of Compositionality

A Associativity of Composition

We will now show associativity of composition for morphisms n
f→ m

g→ l in Har. Note that since
morphisms of Har are equivalence classes of Har representations, we only need show associativity up to
permutation. We begin with a useful lemma

Proposition A.1. L(f)R = R(f)T
L

Proof. L(f)R = f T
L # fR = (f T

R # fL)
T = R(f)T

L

We will now prove associativity up to permutation for each of the components M,L,R,N in seperate
propositions, which together give the main proof. Note that hereafter, to reduce the notational noise, we
will write f g for f #g.

Proposition A.2. (f (gh))M ∼= ((f g)h)M with the permutation id fK−m⊕R(g)T
L ⊕ idhK−l:

Proof. We will first simplify (f (gh))M and ((f g)h)M in order to show some commonalities. We begin
by unpacking definitions:

[f (gh)]M =

R(f)M

L(gh)M

Computing L(gh)M, we obtain

L(gh)M =

R(g)M R(g)L

L(h)M

R(g)T
L

Finally, we can apply R(g)MR(g)L = gT
RgMgL to [f (gh)]M, yielding the simplified diagram:

[f (gh)]M =

gT
R

L(h)M

R(g)T
L

R(f)M

gM gL

We now turn our attention to [(f g)h]M, which we unpack as follows:

[(f g)h]M =

R(f g)M

L(h)M

Analogously, we compute R(f g)M = (f g)T
R(f g)M(f g)R:

R(f g)M =

R(f)M

L(g)M

R(f)T
R

L(g)T
R

R(f)R

L(g)R

P. Wilson & F. Zanasi 15

And using that R(f)R = id,

R(f g)M =

R(f)M

L(g)ML(g)T
R L(g)R

Finally using that L(g)T
RL(g)M = gT

RgMgL:

R(f g)M =

R(f)M

gL L(g)RgMgT
R

Giving us the simplified diagram for [(f g)h]M:

[(f g)h]M =

R(f)M

gL L(g)RgMgT
R

L(h)M

At this point it is clear that [(f g)h]M and [f (gh)]M are related by a permutation. We now complete
the proof by showing that [(f g)h]M ∼= [f (gh)]M for the permutation id⊕R(g)T

L ⊕ id:

R(g)L[f (gh)]MR(g)T
L =

R(f)M

gL R(g)T
L

gMgT
R

L(h)M

R(g)T
LR(g)L

Finally, by applying Proposition A.1 we obtain

R(g)L[f (gh)]MR(g)T
L =

R(f)M

gL L(g)RgMgT
R

L(h)M

= [f (gh)]M

Proposition A.3. [f (gh)]R = (id⊕R(g)T
L ⊕ id)[(f g)h]R

Proof. By similar graphical reasoning, one can compute [(f g)h]R and show it equal to (id⊗R(g)T
L ⊗

id)[(f g)h]R

Proposition A.4. [f (gh)]L = (id⊕R(g)T
L ⊕ id)[(f g)h]L

16 The Cost of Compositionality

Proof. Once again, computing (id⊗R(g)T
L ⊗ id)[(f g)h]R allows us to reach [f (gh)]L

Proposition A.5. [f (gh)]N = [(f g)h]N(id⊕R(g)T
L ⊕ id)

Proof. Same as for fM, where fN is treated as a diagonal matrix.

Proposition A.6. (Composition in Har is associative up to permutation)

Proof. Immediate from propositions A.2, A.4, A.3, and A.5.

B Proof of Proposition 5.3

We expand on the proof sketch provided in the main text, in order to show that FreeΣ
∼= HarΣ. We begin

by defining a functor 〈·〉 : HarΣ→ Csp(Hyp
Σ
)MI (Definition B.1) which we prove is symmetric monoidal

in Proposition B.2. We then use Propositions B.6 and B.3 to show that HarΣ is essentially a ‘relabeling
of generators’ and is thus isomorphic to Csp(Hyp

Σ
)MI in Proposition B.5. Because Csp(Hyp

Σ
)MI
∼= FreeΣ

by [2], this suffices to conclude the proof of Proposition 5.3.
Definition B.1 (Definition of 〈·〉 : HarΣ → Csp(Hyp

Σ
)MI). Choose h ∈ Harn,m. Using the data of h, we

will construct a monogamous cospan of hypergraphs n l→ H r← m whose source and target are discrete
hypergraphs identified with natural numbers:
Hypergraph H The graph represented by hM and hN consists of vertices vi labeled •, and vertices e j

labeled (◦,g j) for g j ∈ Σ. We define H as the hypergraph with nodes vi and labeled hyperedges
e j = ([s1,s2, . . . ,sA], [t1, t2, . . . , tB],g j) where sk is the unique vertex u such that there exists an edge
(u,e j,k) in hM, and tk the unique vertex w such that there is an edge (e j,w,k).

Cospan legs The cospan legs l : n→ H and r : m→ H are constructed from hL and hR, respectively.
Concretely, if we view each leg as a function mapping a natural number to a node in H, then
l = fL #π

n, fK−n
0 and r = fR #π

fK−m,m
1 with π

X ,Y
0 : X×Y → X and π

X ,Y
1 : X×Y → Y .

Proposition B.2. 〈·〉 is a Symmetric Monoidal Functor

Proof. It is clear that 〈·〉 preserves identities: 〈id〉 is mapped to the discrete hypergraph with identity
cospans. Similarly, 〈σ〉 is a cospan of the discrete hypergraph whose left leg is identity and right leg is
the symmetry, so 〈σ〉= σ .

Further, one can verify that the operation of Har composition essentially mimics the computation of
pushouts of hypergraphs, and definition 4.1 tell us that the left and right legs of the cospan 〈 f 〉 # 〈g〉 are
equal to those of 〈 f #g〉.

Finally, we can see that since the tensor product of f ⊗ g of Hars is the direct sum of matrices, the
hypergraph representation of 〈 f ⊗g〉 coincides with 〈 f 〉⊗〈g〉, and once again definition 4.1 ensures that
the left and right legs of the cospan coincide.

Proposition B.3. The morphisms of HarΣ are freely generated by the monoidal signature {JgK | g ∈ Σ}

Proof. Every h ∈ Harn,m can be written f # p for some permutation p so that fM = hM and fR = id.
Further, by the acyclicity property, every h ∈ Harn,m with hR = id can be decomposed into the form
f # (id⊗ JgK⊗ id) for some g ∈ Σ. Consequently, we can decompose any Har into the form

p1 # (id⊗ Jg1K⊗ id) # p2 # (id⊗ Jg2K⊗ id) # . . . # pN

and so the morphisms of HarΣ are freely generated by morphisms JgK for g ∈ Σ.

P. Wilson & F. Zanasi 17

Proposition B.4. 〈JgK〉= g for g ∈ Σ

Proof. Immediate from definition 4.1.

Proposition B.5. Csp(Hyp
Σ
)MI
∼= HarΣ

Proof. By Proposition B.3, HarΣ is generated by JgK for g∈ Σ. Further, since 〈·〉 is a symmetric monoidal
functor (Proposition B.2) which is the inverse of J·K on generators (Proposition B.4), we can use Propo-
sition B.6 to conclude that Csp(Hyp

Σ
)MI
∼= HarΣ.

B.1 Change of Basis

The following lemma is useful in giving our main proof, but not specific to our approach.

Proposition B.6 (Change of Basis). Fix a monoidal signature Σ, and suppose C
F
�
G

D are symmetric

monoidal identity-on-objects functors. If C is generated by Σ, D is generated by {F(g) | g ∈ Σ}, and for
all g ∈ Σ we have G(F(g)) = g then C ∼= D .

Proof. It suffices to show that the functors F and G are inverses.
We first check FG = id. Since every morphism h ∈ C is formed by composition and tensor product

of id, σ , and generators g ∈ Σ, we proceed by induction:
- If h ∈ {id,σ} then FG(h) = h because F,G are symmetric monoidal.

- If h ∈ Σ then FG(h) = G(F(h)) = h by assumption.

- If h = f g then FG(h) = G(F(f g)) = G(F(f)F(g)) = G(F(f))G(F(g)) = f g by inductive hy-
pothesis.

- If h = f ⊗ g then FG(h) = G(F(f ⊗ g)) = G(F(f)⊗F(g)) = G(F(f))⊗G(F(g)) = f ⊗ g by
inductive hypothesis.

Now check GF = id. Choose h ∈ C and proceed again by induction, noting that essentially only the
second case differs:

- If h ∈ {id,σ} then GF(h) = h because F,G are symmetric monoidal.

- If h = F(g) for g ∈ Σ then F(G(h)) = F(G(F(g))) = F(g) = h

- If h = f g then GF(h) = F(G(f g)) = F(G(f)G(g)) = F(G(f))F(G(g)) = f g by inductive hy-
pothesis.

- If h = f ⊗ g then GF(h) = F(G(f ⊗ g)) = F(G(f)⊗G(g)) = F(G(f))⊗F(G(g)) = f ⊗ g by
inductive hypothesis.

Remark B.7. Proposition B.6 amounts to a renaming of generators, and so is analogous to a change of
basis in linear algebra.

C Experimental Setup

Our experimental setup uses the ASV benchmarking library for Python, and BenchmarkingTools for Ju-
lia. Since each language has its own idiosyncracies, we expect that using a language-specific framework
for each implementation will give the fairest results.

18 The Cost of Compositionality

C.1 Software Versions

Table 1: Software Versions
Software Version

Python 3.9.4
NumPy 1.20.1
SciPy 1.6.3

Julia 1.6.1
Catlab.jl 0.12.2

C.2 Hardware Information

Table 2: Hardware Information
Machine CPU CPU Frequency # cores System Memory

Dell XPS15 7590 Intel Core i7-9750H 2.60GHz 12 16GB

	Introduction
	Background
	Hypergraphs with Interfaces
	Parallel Hypergraph Processing
	PROPs of Matrices
	Adjacency Matrices

	Hypergraph Adjacency Representation
	Main Definition
	Permutation Equivalence and Boundary Orderings

	Operations on Hars
	Adequacy of the Har-Implementation
	Complexity
	Empirical Results
	Benchmark #1: Repeated Tensor
	Benchmark #2: Small-Boundary Composition
	Benchmark #3: Large-Boundary Composition
	Benchmark #4: Synthetic Benchmark

	Discussion & Future Work
	Associativity of Composition
	Proof of Proposition 5.3
	Change of Basis

	Experimental Setup
	Software Versions
	Hardware Information

