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Dynamical systems are ubiquitous in science and engineering as models of phenomena that
evolve over time. Although complex dynamical systems tend to have important modular
structure, conventional modeling approaches suppress this structure. Building on recent
work in applied category theory, we show how deterministic dynamical systems, discrete
and continuous, can be composed in a hierarchical style. In mathematical terms, we re-
formulate some existing operads of wiring diagrams and introduce new ones, using the
general formalism of C-sets (copresheaves). We then establish dynamical systems as alge-
bras of these operads. In a computational vein, we show that Euler’s method is functorial for
undirected systems, extending a previous result for directed systems. All the ideas in this
paper are implemented as practical software using Catlab and the AlgebraicJulia ecosystem,
written in the Julia programming language for scientific computing.

1 Introduction

Category theory is about finding the right abstractions—identifying the salient, general features
of the objects of study. In applied category theory the chosen objects of study lie outside of
pure mathematics. One important thread of finding the right abstractions in the sciences has
been understanding the composition of dynamical systems. Dynamical systems are a general
and ubiquitous class of models which capture changing phenomenon. For example, automata
model the changing of states in a computer, Petri nets model the changing concentrations of
chemicals in a reaction network, and flows on a manifold model the evolution of physical
systems. While scientists informally conceive of models compositionally, the modular structure
is often lost in implementation. In this paper, we present a Julia package for dynamical systems
that preserves the compositional structure as formalized by past research. If applied category
theory is about finding the right abstractions for science, then the present work exemplifies
implementing the right abstractions for science.

Existing work on composing dynamical systems varies along two axes. The first axis is
semantic: what is a dynamical system? Dynamical systems are an extremely broad class of
models, as reflected by previous work falling on many different points of the semantic axis.
These points include circuit diagrams, Petri nets, Markov processes, finite state automata,
ODEs, hybrid systems, and Lagrangian and Hamiltonian systems [5, 2, 1, 21, 11, 10, 3]. In this
paper we focus on two kinds of dynamics: continuous flows and discrete transitions.
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2 Operadic modeling of dynamical systems

The second axis is syntactic: how do dynamical systems compose? Two distinct styles of
composition have emerged: directed and undirected, also called machine composition and
resource sharing. In directed composition, information is transferred from designated senders
to designated receivers. Systems are indexed by the behavior of other systems but otherwise
have independent dynamics. In undirected composition, systems compose by sharing resources
or observations. Composed systems affect each other only by acting on the sharedmedium. An
important distinction is that undirected composition is not equivalent to symmetric directed
composition. The directed and undirected perspectives are unified in [11].

1.1 Contributions

1. A practical implementation of operads and their algebras in the programming language
Julia, which is widely used for scientific computing.

2. A reformulation of previously studied operads using C-sets, a diagrammatic approach to
defining data structures. A new instance of this abstraction, the operad of circular port
graphs, is also introduced.

3. Two new algebras for composing dynamical systems. The first algebra represents a di-
rected composition of continuous and discrete systems that extends the syntax of algebras
previously studied in [18, 15, 21] to include merging and creating wires. The second al-
gebra represents the undirected composition of discrete dynamical systems.

4. A proof that Euler’s method is functorial for undirected systems, plus an implementation
in Julia of functorial Euler’s method for both directed and undirected systems.
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2 Preliminary Definitions

2.1 Operads and Operad Algebras

Operads and operad algebras formalize notions of syntax and semantics. In contrast, modeling
tools generally obscure the distinction between syntax and semantics. These blurred lines make
it challenging to interoperate betweenmodeling frameworks and to independently adjustmodel
syntax and model semantics. In this section we give the mathematical background for operad
and operad algebras which will form the foundation of our software implementation.

Throughout we use operads to refer to symmetric colored operads or equivalently symmetric
multicategories. We will also refer to the objects of an operad as its types and the morphisms of
an operad as its terms in order to highlight the connection with syntax.

Definition 2.1. An operad O consists of a collection of types obO and for each = ∈ N+ and types
B1 , . . . , B= , C ∈ obO, a collection of terms O(B1 , . . . , B= ; C), along with

• an identity term 1C ∈ O(C; C) for each type C ∈ obO,
• substitutionmaps◦8 :O(A1 , . . . , A< ; B8)×O(B1 , . . . , B= ; C)→O(B1 , . . . , B8−1 , A1 , . . . , A< , B8+1 , . . . , B= ; C),
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and permutation maps satisfying associativity, unitality, and symmetry laws.
An operad functor � :O→O′ is amap on types and on terms that commuteswith the identity,

substitution, and permutation. Operads and their functors form a category Oprd.1
A rich source of operads and operad algebras are symmetric monoidal categories (SMCs)

and lax monoidal functors. Specifically, a functor O : SMC→ Oprd sends each SMC (C ,⊗,1) to
its underlying operad O(C) with types obC and terms O(C)(B1 , . . . , B< ; C) := C(B1 ⊗ · · · ⊗ B< , C).
When clear from context, we denote O(C) simply by C.
Definition 2.2. Given an operad O, an algebra of O or simply an O-algebra is an operad functor
� : O →O(Set). We call a pair (C ∈ obO ,< ∈ �C) ∈

∫
obO � an element of the algebra.

Symmetric monoidal categories ease the way for mathematical formalization and analysis.
In thiswork, all of the operads andoperad algebras formodelingdynamical systems are induced
by symmetric monoidal categories and lax monoidal functors, respectively. However, the
operadic perspective is better suited to computing because it directly supports =-ary operations
rather than requiring that =-ary operations be decomposed into a tree of binary operations. The
operadic viewpoint is highlighted in the Julia implementation (Section 4). Now we give two
SMCs whose underlying operads define syntaxes for directed and undirected composition of
dynamical systems, respectively.

(a) (b) (c)

Figure 1: The graphical representation of DWD and its wide suboperad O(LensFinSetop ). (a) The type
(2
3
)
. (b) A term(2

0
)
+

(1
2
)
+

(0
3
)
�

(2
2
)
in O(LensFinSetop ). (c) A morphism

( 5 #

5

)
:
(2
0
)
+

(2
2
)
+

(0
3
)
�

(2
2
)
in DWD. The orange and purple

wires represent the apexes of 5 and 5 # respectively. This syntactic diagram depicts the merging of wires (e.g., the
first in-port of the second inner box) and the creation of wires (e.g., the second in-port of the second inner box).

Example 2.3 (Operad of directed wiring diagrams). Given a category C with finite products,
there is a lens category, LensC , whose objects are pairs

( -in
-out

)
where -in , -out ∈ obC and whose

morphisms
( 5
5 #

)
∈ LensC

( ( -in
-out

)
,
( .in
.out

) )
are pair of morphisms 5 :-out→.out, 5 # :.in×-out→-in

[19, Definition 2.2]. The cartesian monoidal structure on C induces a symmetric monoidal
structure on LensC [12]. Therefore LensC has an underlying operad.

In [21, 15, 7] the directed syntax for composing dynamical systems is defined by the operad
underlying

(
LensFinSetop ,+,

(0
0
) )
, often referred to as the operad of wiring diagrams. Following

the Catlab implementation, we instead focus on operad underlying
(
LensCospan(FinSetop) ,+,

(0
0
) )
.

We define DWD B O(LensCospan(FinSetop)) and call it the operad of directed wiring diagrams. In

1See [17] for a detailed exposition of operads and operad functors that aligns with their usage here. See also [9].
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contrast to O(LensFinSetop), which allows only copying and deletion of wires, the syntax defined
by DWD can also represent merging and creation of wires.

The graphical representation of DWD extends the standard graphical representation of
O(LensFinSetop) (Figure 1). Types

( -in
-out

)
are represented as boxes with in-ports -in and out-

ports -out. Let
( 5 #

5

)
:
( -in
-out

)
�

( .in
.out

)
be a term in DWD. The morphism 5 = -out← + → .out

represents a set + of wires with sources and targets given by the left and right legs of the
span. Likewise, 5 # : .in +-out←, → -in represents another set , of wires. The graphical
representation emphasizes the operadic structure by having a separate box for each type in the
term’s domain.
Example 2.4 (Operad of undirected wiring diagrams). We define UWD to be the operad under-
lying the symmetric monoidal category (Cospan(FinSet),+,0) and call it the operad of undirected
wiring diagrams. Graphically, a type " is represented by a box with " exposed ports and a
term "→ �← # is represented by � junction nodes with wires connecting ports " and # to
junctions according to the legs of the cospan [17].

(a) (b)

Figure 2: The graphical representation UWD. (a) The type 6. (b) A term 2+3→ 6← 5 ∈ UWD(2,3;5).

2.2 C-sets
C-sets are a powerful abstraction for capturing data of a fixed shape [14, 16]. In this section, we
define C-sets and introduce specific C-sets implementing operad terms.
Definition 2.5. Let C be a small category. An C-set or instance of C is a copresheaf over C,
equivalently a functor - : C → Set. If - factors through FinSet, then we say that - is finite.
Definition 2.6. Let � : C → D be a functor. Then there is a pullback data migration functor
Δ� : [D ,Set] → [C ,Set] given by precomposition with �. The action of Δ� on objects turns
instances ofD into instances of C.

The category C is a schema that structures data, and an instance- : C→ Set is an instance of
the data structure. Next, we present schemata for undirected wiring diagrams, directed wiring
diagrams, and circular port graphs. In our examples, the schemata are finitely presented
categories and the finite instances of each schema comprise the terms of an operad. We can
thus can take advantage of the rich mathematical structure of C-sets, such as functorial data
migration and the existence of finite limits and colimits, to build syntactic terms.
Example 2.7 (Theory of undirected wiring diagrams). The schema for undirected wiring dia-
grams is Th(UWD), defined in Figure 3. An instance - of Th(UWD) consists of a set of boxes -�,
ports -%, outer ports -&, and junctions -�. Each box 1 ∈ -� has ports -box−1(1) ⊆ -%. Each
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Th(UWD)B
{
� % � &

box juncin juncout
}

Th(CPG)B


&

, % �

expose
src

tgt box



Th(DWD)B



&in

,in

%in

, �

%out

,out

&out

srcin

tgtin

boxintgt

src boxout

srcout

tgtout


Figure 3: The schemata for the theories of undirected wiring diagram, directed wiring diagrams, and circular port
graphs.

port ? ∈ -% connects to the junction - juncin(?), and likewise for outer ports. A finite instance
- of Th(UWD) presents a term in O(Cospan(FinSet)) that has domain types -� and defines the

morphism -%
- juncout−−−−−−→ -�

- juncout←−−−−−− -& in Cospan(FinSet). Up to relabeling of the box elements
and permutation of the domain types, finite elements of Th(UWD) correspond one-to-one with
terms of UWD.
Example 2.8 (Theory of directed wiring diagrams). The schema for directed wiring diagrams
is Th(DWD), defined in Figure 3. An instance - of Th(DWD) consists of a set of boxes -�,
sets of inner in-ports and out-ports -%in and -%out, sets of outer in-ports and out-ports -&in
and -&out, and a set of wires -,in+-, +-,out. Each wire has source and target given by
-srcin+-src+-srcout and -tgtin+-tgt+-tgtout respectively. A finite instance - of Th(DWD)
presents a term in DWD that has domain types -� and defines the morphism(

-&in+-%out
-srcin+-src←−−−−−−−−− -,in+-,

(-tgtin ,-tgt)
−−−−−−−−−→ -%in

-%out
-srcout←−−−−− -,out

-tgtout−−−−−→ -&out

)
:
(
-%in
-%out

)
�

(
-&in
-&out

)
in LensCospan(FinSetop). Up to relabeling of the box elements and permutation of the domain
types, finite elements of Th(DWD) correspond one-to-one with terms of DWD.
Example 2.9 (Theory of circular port graphs). The schema for circular port graphs is Th(CPG),
defined in Figure 3. An instance - of Th(CPG) consists of a set of ports -%, outer ports -&,
and wires -, whose source and target are specified by -src and -tgt respectively.

Every circular port graph induces a directed wiring diagram by functorial data migration.
Let the functor � : Th(CPG) → Th(DWD) be defined on objects by &in ,&out ,,in ,,out ↦→ &,
%in , %out ↦→ %, , ↦→ , , and � ↦→ � and on morphisms by srcin , tgtout ↦→ id& , tgtin ,srcout ↦→
exposes, src ↦→ src, tgt ↦→ tgt, and boxin ,boxout ↦→ box. The pullback data migration functor
Δ� : [Th(OpenCPG),Set] → [Th(DWD),Set] interprets circular port graphs as directed wiring
diagrams by duplicating every port with one copy interpreted as an in-port and the other as
an out-port. Example 2.8 gives an correspondence between finite instances of Th(DWD) and
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terms of DWD. Composing Δ� with this correspondence defines a map from finite instances of
Th(CPG) to terms of DWD.

Definition 2.10. The operad of circular port graphs, denoted CPG, is the suboperad of DWD whose
types are pairs of the form

(-port
-port

)
and whose terms are generated by finite instances of Th(CPG).

Circular port graphs formalize the composition syntax used in stencil-based numerical
algorithms. We prove that every term of CPG can be represented by a finite instance of Th(CPG)
in Proposition A.3.

3 Algebras for Composing Dynamical Systems

Scientists often use diagrams informally to represent relationships between the components
of a system. Over the last decade, applied category theorists have formalized these notions
of compositional and hierarchical dynamical systems. The categorical frameworks offer a
methodology for scientific modeling and their categorical structures can be implemented as
modeling tools. Techiques for formalizing the composition of open dynamical systems often
follow a general strategy. (1) An operad captures the syntax of interacting systems, and operadic
substitution nests syntactic terms to give a more fine-grained description of the interactions. (2)
An algebra over the operad assigns a concrete interpretation to the syntactic diagrams. To each
type, the algebra gives a set of models of that type, and to each term, a function that defines
how to compose the chosen models.

In this section, we define operads and operad algebras for the syntax and semantics of
composing open dynamical systems. The algebras are denoted Dynamsyn

sem where sem ∈ {D,C}
indicates the model semantics (discrete or continuous) and syn ∈ {→,(} indicates the compo-
sition syntax (directed or undirected). The algebras are all defined by lax monoidal functors,
and we use the same notation for both the lax monoidal functor and the underlying algebra.
For the proofs of propositions in this section, see Appendix A.2

3.1 Directed Composition

The framework for directed composition of dynamical systems relies heavily on the generalized
lens construction defined in [19]. Although this theory is robustly developed in [7], here we
present a variant that aligns with our Julia implementation. In particular, we restrict our
attention to dynamical systems defined on Euclidean spaces.

In this section, we define algebras over DWD, which factor through the algebras DS and
CS defined in [18]. We define the algebras in two steps. First, let Euc be the full subcategory
of the category of smooth manifolds spanned by the Euclidean spaces. A strong monoidal
functor evR : Cospan(FinSetop) → Euc is defined on objects by % ↦→ R% and on morphisms

by %
5
←−,

,
−→ & maps to ,∗ ◦ 5 ∗ : R% → R& (see Proposition A.5). By functoriality of the Lens

construction, evR induces a strong monoidal functor LensevR : LensCospan(FinSetop) → LensEuc.
Next, consider the lax monoidal functor

∫
(:FinSet LensEuc

( (R(
R(

)
,−

)
: LensEuc → Set. Explicitly,

this functor maps an object
( R-in
R-out

)
to the set of pairs

(
( ∈ FinSet,

(
D
A

)
:
(R(
R(

)
�

( R-in
R-out

) )
and maps
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a morphism
( 5 #

5

)
to the set map sending ((,

(
D
A

)
) to ((,

( 5 #

5

)
◦
(
D
A

)
). Finally, consider the composite

LensCospan(FinSetop)
LensevR−−−−−→ LensEuc

∫
(:FinSet LensEuc

(
(R(R(),−

)
−−−−−−−−−−−−−−−−−→ Set .

This DWD algebra maps an object
( -in
-out

)
to the set of pairs

(
( ∈ FinSet,

(
D
A

)
:
(R(
R(

)
�

( R-in
R-out

) )
.

We interpret ( as a set of state variables and R( as the state space. Depending on whether we
interpret D : R-in ×R(→ R( as an indexed endomorphism of the state space or as an indexed
vector field on the state space, the algebra represents either discrete dynamical systems or
continuous dynamical systems. In other words, for an input 0 ∈ R-in and state G ∈ R(, we can
either think of D(0, G) ∈ R( as the next state or as defining the vector ¤G = D(0, G). We use the
notation Dynam→D and Dynam→C respectively to highlight the distinct interpretations.2

3.2 Undirected Composition

Just as there is an algebra of continuous systemsover thedirected syntaxDWD, there is an algebra
over the undirected syntax UWD. We define the algebra Dynam(C : Cospan(FinSet)→ Set which
on objects takes " to the set of triples (( ∈ FinSet, E : R(→ R( , ? : "→ () and on morphisms
maps the cospan 5 ="

@
−→ '

A←−# to the setmapDynam(C ( 5 ) : Dynam(C (")→Dynam(C (#) given
by

Dynam(C ( 5 )((, E, ?) = ((+" ', @̃∗ ◦E ◦ @̃∗ , ?̃ ◦ A)

where @̃ and ?̃ are defined by the pushout:
" #

( '

(+" '

? @ A

@̃ ?̃y

This composition of continuous systems is an operadic perspective of the hypergraph category
Dynam presented in [2]. Next, we define undirected composition of discrete systems.

Proposition 3.1. There is an algebra Dynam(D : Cospan(FinSet) → Set which on objects maps
" to the set of triples (( ∈ FinSet, D : R(→ R( , ? : "→ () and on morphisms maps the cospan
5 ="

@
−→ '

A←− # to the set map Dynam(D ( 5 ) : Dynam(D (") → Dynam(D (#) defined by

Dynam(D ( 5 )((,D, ?) = ((+" ',1R(+"' + @̃∗ ◦ (D−1R( ) ◦ @̃∗ , ?̃ ◦ A).

3.3 Functorial Analysis

Compositional modeling paves the way for compositional analysis. Informally, an analysis of
an operad algebra � : O→ Set is an algebra � : O→ Set and a natural transformation � : �⇒ �

which obscures the details of the system and highlights some feature of the behavior. Examples

2In the literature, the algebra of continuous dynamical systems explicitly represents a vector field as a section
D : R(→ )R( of the tangent bundle. However, we present Dynam→C and Dynam→D by the same algebra because they
are implemented identically in AlgebraicDynamics.
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Terminology Mathematical abstraction Julia implementation
diagram of systems ) ∈ O(B1 , . . . , B= ; C) diagram::ACSet{TheoryO}

)inner ∈ O(A1 , . . . , A< ; B8) inner_diagram::ACSet{TheoryO}

elementary models (<1 , . . . ,<=) ∈ �B1× · · · ×�B= models::Vector{T}
composition �())(<1 , . . . ,<=) ∈ �C oapply(diagram, models)
of models
hierarchical ) ◦8 )inner ocompose(diagram,i,inner_diagram)
diagram

Table 1: Comparingmathematical abstractionswith their Julia implementation. Note that diagram stores the number
of domain types = and the types B1 , . . . , B= , C. Likewise models stores the types B1 , . . . , B= . The definitions of ocompose
and oapply check that the arguments have appropriate types.

include identifying fixed points and orbits, solving trajectories, and computing approximations
[2, 20, 4, 13]. The naturality of � implies that the behavior of the total system is defined by the
behaviors of its components.

For both undirected and directed dynamical systems, there exists a natural transformation
which performs Euler’s method. For a map E : R"×R(→ R( and step size ℎ ∈ R+, define the
map Eulerℎ(E) : R"×R(→ R( by Eulerℎ(E)(D0 , G0) = G0+ ℎE(D0 , G0).
Proposition 3.2 (Euler’s method for directed systems, [18]). For ℎ ∈ R+, there exists a natural
transformation Euler→ℎ : Dynam→C ⇒ Dynam→D with components Euler→ℎ

( -in
-out

)
: Dynam→C

( -in
-out

)
→

Dynam→D
( -in
-out

)
defined by

Euler→ℎ

(
-in
-out

) (
( ∈ FinSetop ,

(
E

A

)
:
(
R(

R(

)
�

(
R-in

R-out

))
=

(
(,

(
Eulerℎ(E)

A

))
.

Proposition 3.3 (Euler’s method for undirected systems). For ℎ ∈ R+, there exists a natural
transformation Euler(ℎ : Dynam(C ⇒ Dynam(D with components Euler(ℎ (") : Dynam(C (") →
Dynam(D (") defined by Euler(ℎ (")((, E, ?) = ((,Eulerℎ(E), ?).

4 Julia Implementation

In Julia, the specification of an algebra � : O → Set consists of

• a schema TheoryO such that finite instances of the schema represent terms of O,
• a method ocompose implementing operadic substitution,

• a Julia type T such that values of type T implement algebra elements (C ∈ obO ,< ∈ �C),
• and a method oapply implementing the action of � on terms.

We highlight the correspondence between the mathematical and modeling terminologies.
Let ) : B1 , . . . , B= → C be a term in O. We say that ) represents a diagram or composite of
subsystems. Let <8 ∈ �(B8) for 8 = 1, . . . , =. The elements (B8 ,<8) of � are called models. We
often speak of component or elementary models to emphasize their role in the expression
< = �())(<1 , . . . ,<=) ∈ �C. Likewise, we say that < is the composite or total model. The
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correspondences between themodeling terminology, mathematical abstractions, and Julia code
constructs are listed in Table 1.

The AlgebraicJulia ecosystem is a family of tools built on categorical techniques. Catlab.jl
provides the schemas defined in Examples 2.7, 2.8, and 2.9, alongwith corresponding ocompose
methods. AlgebraicDynamics.jl provides Julia types and oapply methods that implement the
models and their composition for the Dynam algebras of Section 3. The following examples il-
lustrate how applied category theory provides flexible, powerful abstractions for implementing
scientific models.

ncities = 3
roads = [1 => 2, 2 => 3, 1 => 3]
nout_roads = map(i->count(r->r.first==i, roads), 1:ncities)

# Define the syntacitic diagram of systems
multicity_diagram = WiringDiagram([], [])
cities = map(1:ncities) do i
add_box!(multicity_diagram,

Box(Symbol(:city, i), [:S, :I, :R], [:S, :I, :R]))
end

wires = map(Base.Iterators.product(roads, 1:3)) do ((src, tgt), j)
add_wire!(multicity_diagram, (cities[src], j) => (cities[tgt], j))

end

# Define the component models
city_models = map(1:ncities) do i
ContinuousMachine{Float64}(3, 3, 3,
(u,x,p,t) -> p.�*(x - nout_roads[i]*u) + [
-p[Symbol(:�,i)]*u[1]*u[2], # ¤(
p[Symbol(:�,i)]*u[1]*u[2] - p[Symbol(:�,i)]*u[2], # ¤�
p[Symbol(:�,i)]*u[2] ], # ¤'

u -> u)
end

# Compose component models according to the diagram
sir_model = oapply(multicity_diagram, city_models)

# Solve the ODEs
params = LVector(� = 0.01,

�1 = 0.7, �1 = 0.4,
�2 = 0.4, �2 = 0.4,
�3 = 0.1, �3 = 0.4

)

u0 = [100.0, 1.0, 0, 100.0, 0, 0, 100.0, 0, 0]
tspan = (0.0, 1.0)
prob = ODEProblem(sir_model, u0, tspan, params)
sol = solve(prob, Tsit5())

(a)

(b.i) city1

city2

city3

(b.ii)
city1

city2

city3

(b.iii)
city1

city2

city3

(b.iv)
city1 city2

city3

(c)

Figure 4: (a) Julia code for the multi-city SIR model using AlgebraicDynamics. (b) The graphical display of four
possible terms for composition, of which (b.iii) is defined as multicity_diagram in the code in (a). (c) The solution
to the multi-city SIR model produced by the code in (a).

Example 4.1. The SIR model is a classic model of the spread of an infectious disease [8]. A
single-city SIR model has a susceptible population (, an infected population �, and a recovered
population ', which evolve according to the continuous dynamics

¤( = −�(�, ¤� = �(�−�� , ¤' = ��. (1)

Such a model assumes a mixing of the population which fails to account for geographic or
social distinctions between sub-populations. To model such distinctions, we compose multiple
single-city SIR models using the operad algebra Dynam→C : DWD→ Set defined in Section 3.1.

Figure 4(a) shows the code for a multi-city SIR model using AlgebraicDynamics. The
directed wiring diagram, multicity_diagram, is an instance of Th(DWD) and so corresponds to
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a term ) in DWD. Four different wiring diagrams for composing three single-city SIR models
are shown in Figure 4(b), of which (b.iii) is used in the code. The Julia type ContinuousMachine
implements elements of Dynam→C , and the array city_models defines for each city a model with
three states (corresponding to the local (, �, and ' populations), the vector field fromEquation 1
modulated by an inflow and outflow, and an identity readout. The call of the function oapply
applies the set map Dynam→C ()) to the single-city elements defined by city_models and returns
a multi-city model sir_model. Figure 4(c) shows a solution to the multi-city model.

Several aspects of the algebraic formalism translate to useful features of the software. First,
the clear delineation between syntax and semantics enables the user to modify them indepen-
dently. For example, the choice of the composition term multicity_diagram is independent of
the choice of the single-city models city_models. Moreover, adding more components, such
as additional cities, to an existing model is a straightforward application of compositionality.
Without the algebraic abstraction, this procedure would involve many coordinated changes to
the code. Finally, the syntactic diagram gives information about the behavior of the model. For
example, the composition term in Figure 4(b.iv) implies that the behavior of city 1 is indepen-
dent of cities 2 and 3 regardless of the choice of component models. Therefore, any analysis of
these subsystems can be done in parallel.

land_eco
rabbits

foxes
hawks

river_eco fish

growth
rabbits

predation

foxes

decline

predation

hawks

decline

growth

fish

predation

hawks

(a)

growth
rabbits

predation

foxes

decline

predation

hawks

decline

growth

fish

predation

(b)

Figure 5: (a) The graphical depiction of three terms of UWD and their hierarchical relationships. Top:
total_diagram. Bottom left: land_diagram. Bottom right: river_diagram. The graphics (in black) are
produced by the Catlab.Graphics module. The coloring highlights the nested structure. (b) The re-
sult of substituting the terms for the land and river systems into the term for the total ecosystem is
ocompose(total_diagram, [land_diagram, river_diagram]).

Example 4.2. A model of an ecosystem is composed of many primitive growth, decline, and
predation models where a single species may be involved in multiple subsystems. The com-
positional approach allows us to divide the problem into interacting subsystems and conquer
them independently. At the highest level there are two components to the total ecosystem: a
land system and a river system. These subsystems compose by identifying species which act in
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both. In this case, the hawk populations belonging to the land and river systems are identified
in the total system. Figure 5(a) depicts the corresponding term in the operad UWD.

This perspective is modular and hierarchical. It is modular because the models for the land
and river ecosystems are defined independently. It is hierarchical because the models for the
land and river ecosystems can themselves be composed of even more fine-grained interactions.
Figure 5(a) gives terms for the fine-grained interactions within the land and river subsystems
respectively and shows how they nest into the high-level diagram. Given this hierarchical
structure, there are two different but equivalent strategies to construct the complete ecosystem
model. The model elements for the growth, decline, and predation interaction types can be
applied either at the level of sub-ecosystems:

land_sys = oapply(land_diagram, land_models)
river_sys = oapply(river_diagram, river_models)
total_sys = oapply(total_diagram, [land_sys, river_sys])

or at the level of the total ecosystem3:
eco_diagram = ocompose(total_diagram, [land_diagram, river_diagram])
total_sys = oapply(eco_diagram, vcat(land_models, river_models))

Functoriality of Dynam(C implies that these strategies produce models with identical de-
notational semantics, a solution for which is shown in Figure 6. Since syntatic terms can be
built and interpreted hierarchically with equivalent results, hierarchical modeling is flexible,
scalable, and parallelizable. For example, if we discover a fourth species involved in the land
system, then we can adjust its internal syntax and semantics independent of the river system.

W = 10; H = 20
stencil = grid(W, H)
point_model =
DiscreteMachine{Float64}(4, 1, 4,
(u,x,p,t) -> [p.�*(sum(x)-4*u[1])+u[1]],
u -> repeat(u, 4)

)
heat_model = oapply(stencil, point_model)

(a)

(b)

(c)

Figure 7: (a) Julia code for a discrete approximation of the heat equation. (b) Simulation of the model over time
where the boundary conditions specify that heat enters the system from all sides. (c) Simulation of the model over
time where the boundary conditions specify that heat enters the system from the bottom.

Example 4.3. In Definition 2.10, we introduced the operad of circular port graphs CPG and
showed that it is a suboperad of DWD. The compositions

CPG DWD O(Set)
Dynam→C

Dynam→D

define algebras of continuous and discrete systems over circular port graphs. In Algebraic-
Dynamics, the oapply method for circular port graphs is implemented independently of the
oapplymethod for directed wiring diagrams to improve performance.

3The term of UWD corresponding to eco_diagram is shown in Figure 5(d).
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The operad and operad algebras for circular port graphs formalize standard numerical
analysis techniques, namely the method of stencils and the finite difference method. Figure 7
gives a solution to the 2D heat equation using the finite difference method. The method
grid(W::Int, H::Int) returns a circular port graph with , ×� nodes arranged in a grid.
Each node has four ports and is connected to its four adjacent neighbors via symmetric wires.
The unattached ports of boundary nodes are exposed by open ports. This syntactic term
recovers the 5-point stencil.

Example 4.4. So far we have presented three examples of constructing models compositionally.
The next step is to analyzemodels compositionally, using themathematical abstraction of natural
transformationsdefined inSection3.3. Let� : �⇒� beanatural transformationbetweenoperad
algebras. If the Julia type S implements elements of � and the Julia type T implements elements
of �, then � is implemented by a Julia method blackbox(::S)::T. AlgebraicDynamics.jl
implements Euler’s method for both undirected and directed systems.

5 Conclusion

Figure 6: The solution to the complete ecosystem model
defined hierarchically in Example 4.2.

Applied category theory offers rigorous de-
notational semantics for scientific modeling.
The development of Catlab and the Alge-
braicJulia ecosystem provide the computa-
tional framework for implementing these se-
mantics and making them accessible and
practical for scientists. The implementation
in AlgebraicDynamics of operad algebras for
composing open dynamical systems is a first
example of this work and enables modelers
to leverage the abstractions of applied cate-
gory theory to solve real-world problems. In
this paper, we have showcased the many ad-
vantages that these abstractions offer to mod-
ellers, such as hierarchical modeling, hierar-
chical model interpretation, and independence of model syntax and semantics.

In future work, we will lay a foundation for using higher category theory to study relation-
ships between dynamical models. For example, we can use double categories of structured
cospans with resource sharing semantics to study how localized changes to model structure
affect system behavior. Furthermore, while a theme of this work is "implementations informed
by abstractions," its converse "abstractions informed by implementations" is a rich source of
mathematical ideas. For instance, we saw that Euler’s method is a functorial process, yet many
standard numerical methods are not functorial. We aim to develop abstractions characterizing
this lossiness and use them to prove accuracy results. As another direction, the algebras pre-
sented in Section 3 formalize the concept of real-valued data flowing along wires. However, the
Julia implementation suggests that these algebras generalize to types with Frobenius structure.
Finally, implementing the terms of operads as C-sets is a useful device for treating syntactic
terms as data structures. We conjecture that this is an artifact of a more general theory of
operads defined by C-sets.
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A Proofs

A.1 Circular port graphs

Definition A.1. The theory of circular port graphs with a single box is

Th(CPG)! B


&

, %

expose
src

tgt


.

Let - be a finite instance of Th(CPG)!. Then - induces the morphism

(
5 #(-)
5 (-)

)
B

(-&+-% -1&+-src
←−−−−−−− -&+-,

(-expose,-tgt)
−−−−−−−−−−−→ -%

-%
-expose
←−−−−−− -&

-1&−−−→ -&

)
:
(
-%

-%

)
�

(
-&

-&

)
in LensCospan(FinSetop).

Lemma A.2. The objects of form
(-port
-port

)
for -port ∈ FinSetop and the morphisms generated by

finite instances of Th(CPG)! form a symmetric monoidal subcategory of LensCospan(FinSetop).

Proof. It suffices to show that the morphisms of LensCospan(FinSetop) induced by finite instances
of Th(CPG)! contain the identities, braidings, associators, and unitors, and are closed under
monoidal products and composition.

Let
(-port
-port

)
be an object of LensCospan(FinSetop). Then the identity 1(-port

-port
) is

( 5 #(-)
5 (-)

)
where - is the

finite instance of Th(CPG)! given by the following diagram:

-port

0 -port

1-port

!

!

Similarly, the braidings, associators, and unitors are generated by finite instances of Th(CPG)
that are defined by the braidings, associators, and unitors in (FinSet,+,0).

Given finite instances - and . of Th(CPG)!, there is a finite instance - +. : Th(CPG)!→ Set
induced by disjoint union in Set. Explicitly, - +. is defined by the following diagram:

-&+.&

-, +., -%+.%
-expose+.expose

-tgt+.tgt

-src+.src

Thus,
( 5 #(-)
5 (-)

)
+

( 5 #(.)
5 (.)

)
=

( 5 #(-+.)
5 (-+.)

)
.



S. Libkind, A. Baas, E. Patterson, and J.P. Fairbanks 15

Let - and . be finite instances of Th(CPG)! such that -% =.&. Define - ◦. to be the finite
instance of Th(CPG)! given by the following diagram:

-&

-, +., .%
(.expose◦-tgt)+.tgt

(.expose◦-src)+.src
.expose◦-expose

Then we have
( 5 #(-)
5 (-)

)
◦
( 5 #(.)
5 (.)

)
=

( 5 #(-◦.)
5 (-◦.)

)
. �

Recall that a term of the operad DWD defined in Example 2.3 consists of
• a natural number =
• domain types

( -in,8
-out,8

)
∈ obLensCospan(FinSetop) for 8 = 1, . . . , =

• a codomain type
( .in
.out

)
∈ obLensCospan(FinSetop)

• a morphism
( 5 #

5

)
:
( -in,1
-out,1

)
+ · · · +

( -in,=
-out,=

)
�

( .in
.out

)
in LensCospan(FinSetop).

Let - be a finite instance of Th(CPG)with #(-�)= =. Fix an ordering (11 , . . . , 1=) of the elements
{11 , . . . , 1=} = -�. Note that (-box)−1(11)+ · · · + (-box)−1(1=) = -%. The term of DWD induced
by - has

• = = #(-�)
• domain types

((-box)−1(18)
(-box)−1(18)

)
for 8 = 1, . . . , =

• codomain type
(-&
-&

)
• morphism

( 5 #(Δ�-)
5 (Δ�-)

)
where � : Th(CPG)! ↩→ Th(CPG) is the obvious inclusion.

In Definition 2.10 we defined CPG to be the suboperad of DWD whose type are pairs
(-port
-port

)
and whose terms are generated by finite instances of Th(CPG).
Proposition A.3. Every term of CPG is induced by a finite instance of Th(CPG).

Proof. Consider the term ) of CPG consisting of
• a natural number =
• domain types

(-port,8
-port,8

)
∈ obLensCospan(FinSetop) for 8 = 1, . . . , =

• a codomain type
(.port
.port

)
∈ obLensCospan(FinSetop)

• a morphism
( 5 #

5

)
:
(-port,1
-port,1

)
+ · · · +

(-port,=
-port,=

)
�

(.port
.port

)
in LensCospan(FinSetop).

Since CPG underlies the symmetric monoidal category defined in Lemma A.2, there exists a
finite instance -̃ of Th(CPG)! such that

( 5 #

5

)
=

( 5 #(-̃)
5 (-̃)

)
. Note that -̃ must satisfy -̃% = -port,1+· · ·+

-port,= . Let � : -̃%→ {1, . . . , =} be the partition defined by �−1(8) = -port,8 for 8 = 1, . . . , =.
Then ) is induced by the instance of Th(CPG) given by the diagram

-̃&

-̃, -̃% {1, . . . , =}
-̃tgt

-̃src
-̃expose

�

�
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A.2 Algebras for Composing Dynamical Systems

DefinitionA.4. Let 5 : (→ (′ in FinSet. Define the pullback 5 ∗ :R(′→R( by 5 ∗(G′)(�)= G′( 5 (�))
for G′ ∈ R(′, � ∈ (. The pullback induces a contravariant functor FinSet→ Euc.

Define the pushforward 5∗ : R(→ R(′ by

5∗(G)(�′) =
∑

�∈ 5 −1(�′)
G(�).

for G ∈ R(, �′ ∈ (′. The pushforward induces a covariant functor FinSet→ Euc.
Both functors commute with scaling. So for ℎ ∈ R, 5∗(ℎG) = ℎ 5∗(G) and 5 ∗(ℎG) = ℎ 5 ∗(G).

A.2.1 Directed Systems

Proposition A.5. There exists a strongmonoidal functor evR : Cospan(FinSetop)→ Euc defined

on objects by % ↦→ R% and on morphisms by %
5
←−,

,
−→& to ,∗ ◦ 5 ∗ : R%→ R& .

Proof. To show that evR preserves composition, it suffices to show that for the diagram

, ×&+

, +

% & '

, ℎ

�, �+
y

5 8

we have ℎ∗ ◦,∗ = (�+ )∗ ◦�∗, . We verify this explicitly. For G ∈ R, , � ∈ + ,

(ℎ∗ ◦,∗)(G)(�) = ,∗G(ℎ(�)
=

∑
�∈,−1(ℎ(�))

G(�)

=

∑
(�,�)∈,×&+

G(�, (�,�))

=

∑
(�,�)∈,×&+

�∗,G(�,�)

= ((�+ )∗ ◦�∗, )G(�).

Preservation of identity follows from the fact that the pullback and pushforward functors
preserve identity. Strength follows from the natural isomorphism R%+%′'R%×R%′. �

A.2.2 Undirected Systems

Lemma A.6. There is a functor �D : FinSet→ Set which on objects maps a finite set ( to
the set of set maps R( → R(. For a morphism 5 : ( → (′ in FinSet, �D( 5 ) is defined by
�D( 5 )(D) = 1R(′ + 5∗ ◦ (D−1R( ) ◦ 5 ∗.
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Proof. �D preserves identities. Let 1( : (→ ( and D ∈ �D((). Then

�D(1()(D) = 1R( +1R( ◦ (D−1R( ) ◦1R( = D.

�D preserves compositions. Let 5 : (→ (′, , : (→ (′′, and D ∈ �D((). Then,

�D(, ◦ 5 )(D) = 1R(′′ +(, ◦ 5 )∗(D−1R( )(, ◦ 5 )∗

= 1R(′′ +,∗ ◦
(
5∗ ◦ (D−1R( ) ◦ 5 ∗

)
◦,∗

= 1R(′′ +,∗ ◦
(
�D 5 (D)−1R(′

)
◦,∗

= (�D(,) ◦�D( 5 ))(D). �

Lemma A.7. �D : (FinSet,+,0) → (Set,×,1) is a lax monoidal functor when equipped with the
unique map � : 1→ �D(0) and the natural transformation

�(,(′ : �D(()×�D((′) → �D((+(′)

defined by
(D,D′) ↦→ 8∗ ◦D ◦ 8∗+ 8′∗ ◦D′ ◦ 8′∗

where 8 : (→ (+(′, 8′ : (′→ (+(′ are the natural inclusion maps.

Proof. Straightforward. �

Proposition 3.1. There is an algebra Dynam(D : Cospan(FinSet) → Set which on objects maps
" to the set of triples (( ∈ FinSet, D : R(→ R( , ? : "→ () and on morphisms maps the cospan
5 ="

@
−→ '

A←− # to the set map Dynam(D ( 5 ) : Dynam(D (") → Dynam(D (#) defined by

Dynam(D ( 5 )((,D, ?) = ((+" ',1R(+"' + @̃∗ ◦ (D−1R( ) ◦ @̃∗ , ?̃ ◦ A).

" #

( '

(+" '

? @ A

@̃ ?̃y

Proof. The decorating functor �D defines a hypergraph category of decorated cospans [5].
The algebra Dynam(D is induced by the 1-equivalence between hypergraph categories and
Cospan(FinSet) algebras defined in [6]. �

Proposition 3.3 (Euler’s method for undirected systems). For ℎ ∈ R+, there exists a natural
transformation Euler(ℎ : Dynam(C ⇒ Dynam(D with components Euler(ℎ (") : Dynam(C (") →
Dynam(D (") defined by Euler(ℎ (")((, E, ?) = ((,Eulerℎ(E), ?).

Proof. Theorem 17 of [2] defines a hypergraph category Dynam as a decorated cospan category
with decorating functor � : (FinSet,+,0) → (Set,×,1) defined
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• on objects: ( maps to the set of continuous maps E : R(→ R( 4

• on morphisms: 5 : (→ (′ in FinSet maps to � 5 : R(→ R(′ defined by � 5 (E) = 5∗ ◦E ◦ 5 ∗.
The algebra Dynam(C is the Cospan(FinSet) algebra induced by this hypergraph category.

Let ℎ ∈ R+. Recall that for a map E : R(→ R(, Eulerℎ(E) = 1R( + ℎE. Let 5 : (→ (′. Then,

�(() �D(()

�((′) �D((′)

Eulerℎ

�( 5 )

Eulerℎ

�D( 5 )

commutes because for E : R(→ R(,

(�D( 5 ) ◦Eulerℎ)(E) = 1R(′ + 5∗ ◦ (EulerℎE−1R( ) ◦ 5 ∗

= 1R(′ + 5∗ ◦ (ℎE) ◦ 5
∗

= 1R(′ + ℎ( 5∗ ◦E ◦ 5
∗)

= Eulerℎ( 5∗ ◦E ◦ 5 ∗)
= (Eulerℎ ◦� 5 )(E).

Therefore, Eulerℎ : �⇒ �D is a natural transformation. This natural transformation defines
a functor between the hypergraph categories defined by � and �D (see [5]) which in turn
induces the transformation Euler(ℎ (see [6]). �

4In [2] �( is defined to be the set of algebraicmaps E :R(→R( . The more general definition presented here does
not affect the results.
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