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Lovász (1967) showed that two finite relational structures A and B are isomorphic if, and only if,
the number of homomorphisms from C to A is the same as the number of homomorphisms from C
to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this
fact. We propose a new categorical formulation, which applies to any locally finite category with
pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two
variants of Lovász’ theorem: the result by Dvořák (2010) and the result of Grohe (2020). They
both characterise the indistinguishability of graphs with respect to a fragment of first-order logic
with counting quantifiers in terms of homomorphism counts from graphs of tree-width (resp. tree-
depth) at most k. The connection of our categorical formulation with these results is obtained by
means of the game comonads of Abramsky et al. (2017, 2018) We also present a novel application
to homomorphism counts in modal logic.

1 Background

Over fifty years ago, Lovász [10] proved that two finite relational structures A and B are isomorphic if,
and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms
from C to B, for any finite structure C. Not long after Pultr [12] proved a categorical generalisation of this
fact. He showed that every finitely well-powered, locally finite category A with (extremal epi, mono)
factorisation is combinatorial, that is, for a,b ∈A ,

a∼= b ⇐⇒ |homA (c,a)|= |homA (c,b)| for every c in A

where |homA (c,a)| denotes the number of morphisms c→ a in A . Similar categorical generalisations
with slightly different assumptions were also proved by Isbell [8] and Lovász [11]. Note that the differ-
ence from Yoneda Lemma is that naturality in c is not required.

We provide a new categorical generalisation of Lovász’ theorem:

Theorem 1. Let A be a locally finite category. If A has pushouts and a proper factorisation system
(E ,M ), then it is combinatorial.

By a proper factorisation system we mean a weak factorisation system (E ,M ) such that E is a class of
epimorphisms and M is a class of monomorphisms. It is immediate to see that Lovász’ theorem follows
from Theorem 1, when A is taken to be the category Σ f of finite σ -structures with homomorphisms, for
a fixed finitary relational signature σ .
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What sets our result apart from the other categorical generalisations is that our proof uses elementary
facts about polyadic spaces (cf. Joyal [9]), which are the Stone duals of Boolean hyperdoctrines, in
order to show that the unnatural isomorphism of homA (−,a) and homA (−,b) implies an unnatural
isomorphism of M (−,a) and M (−,b), where M (c,a) is the set of M -morphisms c→ a. Moreover,
the usual combinatorial counting argument is eliminated by referring to the Principle of Inclusion and
Exclusion. Theorem 1 is also well-suited for applications to game comonads that we discuss next.

1.1 Refinements

The seminal result of Lovász [10] has led to extensions and investigations in many different directions.
Notably for us, Grohe [7] recently proved the following refinement: for finite graphs A,B,

A≡Cn B ⇐⇒ |hom(C,A)|= |hom(C,B)|

for every finite graph C of tree-depth ≤n. Where A ≡Cn B denotes that A and B are indistinguishable in
Cn, that is, in the first-order logic with counting quantifiers and quantifier depth at most ≤n. Similarly,
Dvořák [6] showed that homomorphism counts from graphs of tree-width≤k classify graphs up-to indis-
tinguishability in C k+1, which is the first-order logic with counting quantifiers and restricted to no more
than k+1 distinct variables [4].

An interplay between fragments of first-order logic and combinatorial parameters (such as tree-width
and tree-depth) is also typical for game comonads of Abramsky et al. [1, 3]. We show that these game
comonads provide the connection between Theorem 1 and the results of Dvořák and Grohe.

1.2 Game comonads

The Ehrenfeucht–Fraı̈ssé comonad En, for a fixed positive integer n (cf. [3]), is a comonad on the cate-
gory Σ of σ -structures, where σ is a relational signature. The elements of En(A), for a σ -structure A, are
representing states in the Ehrenfeucht–Fraı̈ssé game, namely En(A) consists of non-empty sequences of
length ≤n.

As shown already in [3], the Ehrenfeucht–Fraı̈ssé comonad can express both the logical and combi-
natorial properties mentioned in Grohe’s theorem. Namely, tree-depth of a σ -structure A is expressible
by admitting a coalgebra structure:

∃ a comonad coalgebra A→ En(A) ⇐⇒ A has tree-depth at most n.

Similarly, the indistinguishability by the Cn fragment of logic is expressed by an isomorphism of cofree
coalgebras. To this end, set σ+ to be the relational signature σ extended with a fresh binary relation I.
Extending the signature is necessary in order to capture equality in the logic. As before we have a
category Σ+ of σ+-structures and the Ehrenfeucht–Fraı̈ssé comonad E+

n on Σ+. Then, for σ -structures
A,B,

A≡Cn B ⇐⇒ FE+
n (J(A))∼= FE+

n (J(B))

where FE+
n : Σ+→EM(E+

n ) assigns to the σ+-structure A the cofree Eilenberg–Moore coalgebra E+
n (A)→

E+
n (E+

n (A)), and
J : Σ→ Σ

+

is the functor that maps a σ -structure A to the σ+-structure J(A), obtained from A by interpreting I as the
equality symbol. Note that J has a left adjoint H : Σ+→ Σ, mapping a σ+-structure A to the σ -structure
reduct of A quotiented by the transitive, symmetric and reflective closure of the added relation I.



Anuj Dawar, Tomáš Jakl & Luca Reggio 3

Similarly, the indistinguishability by the C k fragment and tree-width, appearing in Dvořák’s theorem,
can be expressed in terms of the pebbling comonad Pk [1].

2 Categorical proofs of Dvořák’s and Grohe’s theorems

Both Grohe’s and Dvořák’s theorems can be expressed in terms of the Ehrenfeucht–Fraı̈ssé and pebbling
comonads, respectively. We devised a general categorical framework that is parametric in the comonad
C on Σ and from which the two theorems follow. To this end, for the forgetful functor UC : EM(C)→ Σ,
write im(UC) for the full subcategory of Σ consisting of the relational structures in the image of UC.
Theorem 2. Assume that C and C+ are comonads on Σ and Σ+, respectively, and also that

1. C+ restricts to finite σ+-structures Σ
+
f → Σ

+
f , and

2. the embedding J : Σ→ Σ+ and its left adjoint H restrict to Σ f ∩ im(UC) and Σ
+
f ∩ im(UC+

).
Then, for any finite σ -structures A and B,

FC+
(J(A))∼= FC+

(J(B)) if, and only if, |homΣ f (C,A)|= |homΣ f (C,B)|

for every finite σ -structure C in im(UC).
The proofs of Grohe’s and Dvořák’s theorems essentially reduce to showing that the assumptions of

Theorem 2 are satisfied for the appropriate comonads. The “combinatorial core” of these results, requires
a specific argument for each comonad and cannot be reduced to diagram chasing. In fact, verifying that
the functor H restricts to Σ

+
f ∩ im(UC+

)→ Σ f ∩ im(UC), as required in 2, corresponds to checking that
the operation D 7→ H(D) does not increase the tree-depth or tree-width.

We also apply the same machinery to another game comonad: the graded modal comonad Mk
(cf. [3]). This gives a new Lovász-style result for pointed Kripke structures, relating homomorphism
counts from synchronization trees of bounded height to the equivalence in graded modal logic.

In order to prove Theorem 2 we need the following corollary of Theorem 1, which is a direct conse-
quence of the fact that the forgetful functor EM(C)→A , for a comonad C on A , creates colimits and
isomorphisms and also that any cocomplete category that is well-copowered admits a proper factorisation
system.
Lemma 3. Let C be any comonad on Σ. Then EM f (C), the category of finite coalgebras for C, is
combinatorial.

In fact, Lemma 3 holds in greater generality. The same proof would go through for any comonad C
on a cocomplete and well-copowered category A with a locally finite full subcategory A f , assuming A f

is closed under finite colimits in A and b ∈A f whenever a→ b is an epimorphism in A with a ∈A f .

Proof sketch of Theorem 2. By Lemma 3, FC+
(J(A))∼= FC+

(J(B)) if, and only if, |hom(γ,FC+
(J(A)))|

is equal to |hom(γ,FC+
(J(B)))|, for all finite coalgebras γ : D→ C+(D). However, by UC+ a FC+

,
assumption 2 of the theorem and the fact that J is full and faithful, the right-hand-side of the last equiva-
lence reduces to |homΣ f (C,A)|= |homΣ f (C,B)|, for every finite σ -structure C in im(UC).

3 Outlook

The power of our technique lies in the generality of our approach. Our method lays a pathway to dis-
covering more Lovász-type theorems. In particular, any comonad on the category of σ -structures that
satisfies the conditions of Theorem 2 will yield a Lovász-type theorem. The natural next step to test this
theory is to apply our results to the game comonads introduced in [2] and [5].
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