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Lovéasz (1967) showed that two finite relational structures A and B are isomorphic if, and only if,
the number of homomorphisms from C to A is the same as the number of homomorphisms from C
to B for any finite structure C. Soon after, Pultr (1973) proved a categorical generalisation of this
fact. We propose a new categorical formulation, which applies to any locally finite category with
pushouts and a proper factorisation system. As special cases of this general theorem, we obtain two
variants of Lovdsz’ theorem: the result by Dvotdk (2010) and the result of Grohe (2020). They
both characterise the indistinguishability of graphs with respect to a fragment of first-order logic
with counting quantifiers in terms of homomorphism counts from graphs of tree-width (resp. tree-
depth) at most k. The connection of our categorical formulation with these results is obtained by
means of the game comonads of Abramsky et al. (2017, 2018) We also present a novel application
to homomorphism counts in modal logic.

1 Background

Over fifty years ago, Lovdsz [10] proved that two finite relational structures A and B are isomorphic if,
and only if, the number of homomorphisms from C to A is the same as the number of homomorphisms
from C to B, for any finite structure C. Not long after Pultr [12] proved a categorical generalisation of this
fact. He showed that every finitely well-powered, locally finite category <7 with (extremal epi, mono)
factorisation is combinatorial, that is, for a,b € o,

a=b <<= |homgy(c,a)| =|homy(c,b)| for every c in &7

where |hom,/(c,a)| denotes the number of morphisms ¢ — a in <7. Similar categorical generalisations
with slightly different assumptions were also proved by Isbell [8] and Lovasz [11]. Note that the differ-
ence from Yoneda Lemma is that naturality in c is not required.

We provide a new categorical generalisation of Lovasz’ theorem:

Theorem 1. Let o7 be a locally finite category. If &/ has pushouts and a proper factorisation system
(&, M), then it is combinatorial.

By a proper factorisation system we mean a weak factorisation system (&',.#) such that & is a class of
epimorphisms and .7 is a class of monomorphisms. It is immediate to see that Lovasz’ theorem follows
from Theorem 1, when ./ is taken to be the category X of finite o-structures with homomorphisms, for
a fixed finitary relational signature ©.
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2 Lovdsz-Type Theorems and Game Comonads

What sets our result apart from the other categorical generalisations is that our proof uses elementary
facts about polyadic spaces (cf. Joyal [9]), which are the Stone duals of Boolean hyperdoctrines, in
order to show that the unnatural isomorphism of hom, (—,a) and hom, (—,b) implies an unnatural
isomorphism of .#Z (—,a) and .# (—,b), where .# (c,a) is the set of .#-morphisms ¢ — a. Moreover,
the usual combinatorial counting argument is eliminated by referring to the Principle of Inclusion and
Exclusion. Theorem 1 is also well-suited for applications to game comonads that we discuss next.

1.1 Refinements

The seminal result of Lovdsz [10] has led to extensions and investigations in many different directions.
Notably for us, Grohe [7] recently proved the following refinement: for finite graphs A, B,

A=¢ B <= |hom(C,A)| = |hom(C,B)|

for every finite graph C of tree-depth <n. Where A =¢ B denotes that A and B are indistinguishable in
%6, that is, in the first-order logic with counting quantifiers and quantifier depth at most <n. Similarly,
Dvordk [6] showed that homomorphism counts from graphs of tree-width <k classify graphs up-to indis-
tinguishability in €**!, which is the first-order logic with counting quantifiers and restricted to no more
than k + 1 distinct variables [4].

An interplay between fragments of first-order logic and combinatorial parameters (such as tree-width
and tree-depth) is also typical for game comonads of Abramsky et al. [1, 3]. We show that these game
comonads provide the connection between Theorem 1 and the results of Dvorak and Grohe.

1.2 Game comonads

The Ehrenfeucht—Fraissé comonad E,, for a fixed positive integer n (cf. [3]), is a comonad on the cate-
gory X of o-structures, where o is a relational signature. The elements of E,(A), for a o-structure A, are
representing states in the Ehrenfeucht—Fraissé game, namely E,(A) consists of non-empty sequences of
length <n.

As shown already in [3], the Ehrenfeucht—Fraissé comonad can express both the logical and combi-
natorial properties mentioned in Grohe’s theorem. Namely, tree-depth of a o-structure A is expressible
by admitting a coalgebra structure:

Jacomonad coalgebraA — E,(A) <= A has tree-depth at most n.

Similarly, the indistinguishability by the %, fragment of logic is expressed by an isomorphism of cofree
coalgebras. To this end, set 6™ to be the relational signature ¢ extended with a fresh binary relation 1.
Extending the signature is necessary in order to capture equality in the logic. As before we have a
category " of o -structures and the Ehrenfeucht-Fraissé comonad E;f on £*. Then, for o-structures
A,B,

A=g B > F%(J(A)=F% (J(B))

where FE : £+ — EM(E) assigns to the ot -structure A the cofree Eilenberg—Moore coalgebra E (A) —
E; (E; (4)), and

J: T Xt
is the functor that maps a o-structure A to the o -structure J(A), obtained from A by interpreting I as the

equality symbol. Note that J has a left adjoint H: ¥ — X, mapping a 0" -structure A to the o-structure
reduct of A quotiented by the transitive, symmetric and reflective closure of the added relation /.



Anuj Dawar, Tomas Jakl & Luca Reggio 3

Similarly, the indistinguishability by the € fragment and tree-width, appearing in Dvof4k’s theorem,
can be expressed in terms of the pebbling comonad Py [1].

2 Categorical proofs of Dvorak’s and Grohe’s theorems

Both Grohe’s and Dvorédk’s theorems can be expressed in terms of the Ehrenfeucht—Fraissé and pebbling
comonads, respectively. We devised a general categorical framework that is parametric in the comonad
C on X and from which the two theorems follow. To this end, for the forgetful functor U®: EM(C) — X,
write im(U) for the full subcategory of X consisting of the relational structures in the image of U°.
Theorem 2. Assume that C and C* are comonads on ¥ and X7, respectively, and also that

1. C7 restricts to finite 6" -structures ZJfr — Z;f, and

2. the embedding J: ¥ — XF and its left adjoint H restrict to £y Nim(U®) and Z]f Nim(UC").
Then, for any finite G-structures A and B,

FC (J(A)) 2 FC (J(B)) if. and only if

homy,(C,A)| = |homg,(C, B)|

for every finite o-structure C in im(U©).

The proofs of Grohe’s and Dvorak’s theorems essentially reduce to showing that the assumptions of
Theorem 2 are satisfied for the appropriate comonads. The “combinatorial core” of these results, requires
a specific argument for each comonad and cannot be reduced to diagram chasing. In fact, verifying that
the functor H restricts to Z;{ Nim(UC") - £ #Nim(UC), as required in 2, corresponds to checking that
the operation D — H(D) does not increase the tree-depth or tree-width.

We also apply the same machinery to another game comonad: the graded modal comonad M
(cf. [3]). This gives a new Lovéasz-style result for pointed Kripke structures, relating homomorphism
counts from synchronization trees of bounded height to the equivalence in graded modal logic.

In order to prove Theorem 2 we need the following corollary of Theorem 1, which is a direct conse-
quence of the fact that the forgetful functor EM(C) — 7, for a comonad C on <7, creates colimits and
isomorphisms and also that any cocomplete category that is well-copowered admits a proper factorisation
system.

Lemma 3. Let C be any comonad on ¥. Then EMf(C), the category of finite coalgebras for C, is
combinatorial.

In fact, Lemma 3 holds in greater generality. The same proof would go through for any comonad C
on a cocomplete and well-copowered category <7 with a locally finite full subcategory <7, assuming .«7¢
is closed under finite colimits in .7 and b € %7y whenever a — b is an epimorphism in ./ with a € 27;.

Proof sketch of Theorem 2. By Lemma 3, FC' (J(A)) = FC' (J(B)) if, and only if, |hom(y, FC" (J(A)))|
is equal to [hom(y,FC" (J(B)))], for all finite coalgebras y: D — C* (D). However, by UC" - FC,
assumption 2 of the theorem and the fact that J is full and faithful, the right-hand-side of the last equiva-
lence reduces to [homy,(C,A)| = [homy,(C,B)|, for every finite 6-structure C in im(U ©. O

3 Outlook

The power of our technique lies in the generality of our approach. Our method lays a pathway to dis-
covering more Lovasz-type theorems. In particular, any comonad on the category of o-structures that
satisfies the conditions of Theorem 2 will yield a Lovasz-type theorem. The natural next step to test this
theory is to apply our results to the game comonads introduced in [2] and [5].
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