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Introduction

We introduce functorial language models: a princi-
pled way to compute probability distributions over
word sequences given a monoidal functor from
grammar to meaning. This yields a method for
training categorical compositional distributional
(DisCoCat) models on raw text data. We provide a
proof-of-concept implementation in DisCoPy (de
Felice et al., 2020), see appendix A.
Language models, i.e. probability distributions

over word sequences, are a cornerstone of natu-
ral language processing and information retrieval
(Ponte and Croft, 1998). Neural models (Bengio
et al., 2003), where these distributions are learnt by
a neural network, are now built in everyday tools
such as virtual assistants, automatic translation, etc.
However effective they may be, neural models are
not compositional in the sense that they do not
take the grammatical structure of sentences into
account, at least not explicitly. This severely limits
our ability to interpret them: if we open the black
box, we only see matrices of weights.
On the other hand, categorical compositional

distributional (DisCoCat)models (Clark et al., 2008,
2010) use grammatical structure to compose the
distributional meaning of words together into a
meaning for the sentence. Grammar is explicitly
represented as string diagrams, which allow formal
reasoning about natural language semantics, for
example analysing ambiguity (Kartsaklis et al.,
2013, 2014; Piedeleu et al., 2015) and entailment
(Sadrzadeh et al., 2018a; de Felice et al., 2019).

However, despite emprical validation on small-
scale examples (Grefenstette and Sadrzadeh, 2011),
applying DisCoCat models at a large scale to real-
world text data appears like a far-away goal. The
challenge is at least two-fold: 1) we need a robust
way to predict the grammatical structure of a given
word sequence, 2) we need an efficient way to learn

the meaning of each word, given the grammatical
structures inwhich it occurs. The first point requires
a probabilistic grammar: it is not enough to know
whether a sequence is grammatical, we need a
probability distribution over its possible parsings.

It has also been argued that a robust model ought
to be incremental (Sadrzadeh et al., 2018b): scan-
ning through the given word sequence left-to-right
and updating its prediction for what comes next.
This plays a crucial role in the context of informal
language and dialogues (Purver et al., 2006). Pre-
vious work by the first author and collaborators
(Shiebler et al., 2020) characterise these incremen-
tal, probabilistic parsers in terms of a functor from
formal grammars to automata.

The second challenge, i.e. how to use grammar
for learning the meaning of words, is essential if
we want DisCoCat to work as a standalone model
for natural language. Indeed, the first experiments
(Grefenstette and Sadrzadeh, 2011) assumed the
vector embedding for nouns to be given by some
other means, such as co-occurence counts or neural
language models. On the other hand, in more recent
experiments on quantum hardware (Meichanetzidis
et al., 2020a,b; Coecke et al., 2020) the meaning of
words is learnt directly from the training data of a
supervised question-answering task. We coin the
term functorial learning for this approach, as it can
be understood as learning a functor from data.

We give a formal definition of this functorial
approach and define functorial language models
by composition with a probabilistic grammar. Con-
cretely, we train a DisCoCat model to predict which
word is missing in a sentence with a hole. We argue
that this captures precisely the idea of distributional
compositionality: extending Firth’s principle, we
shall know a word by the company it keeps and by
the grammatical structure in which it occurs.



1 Functorial learning for DisCoCat

DisCoCat models have a one-sentence definition:
they are rigid monoidal functors from the category
generated by a pregroup grammar to vector spaces1
and linear maps. Let’s unpack this definition and
repack it in a format suitable for computation.
Fix a set of words V , called the vocabulary, and

a set of basic types X . A rule is a pair of sequences
of words and types r ∈ (V + X)? × (V + X)?,
where ×, + and ? denote respectively the Cartesian
product, the disjoint union and the free monoid
X? =

∐
n∈N Xn with unit 1 the empty string. A

grammar G = (V, X, R, s) is given by a set R of such
rules together with a distinguished s ∈ X called
the sentence type. This defines a signature in the
sense of (Selinger, 2010) which generates a free
monoidal category G. The objects are sequences
of words and types, the arrows are progressive2
planar3 string diagrams with rules as boxes. The
language of G is defined as the sequences x ∈ V?

such that there is a diagram g : x → s in G: its
grammatical structure.
This definition merely reformulates the notion

of semi-Thue system (Thue, 1914) in the language
of monoidal category theory. (Post, 1947) and
(Markov, 1947) independently proved the undecid-
ability of the parsing problem, i.e. given G and
x ∈ V? decide whether there exists g : x → s
in G. (Chomsky, 1957) then put the equivalent
notion of unrestricted grammar at the bottom of his
well-known hierarchy. In parallel, (Lambek, 1958)
defined his calculus in terms of closed monoidal
categories, taking inspiration from the categorial
grammars of (Adjukiewicz, 1935) and (Bar-Hillel,
1953). Half a century later, pregroup grammars
(Lambek, 1999, 2001, 2008) simplified this calculus
by going from closed to rigid monoidal categories.
Pregroup grammars are at the basis of the original
DisCoCat model of (Clark et al., 2008).

Definition 1.1. A pregroup grammar has types
X ×Z where for n ∈ N the types (x,−n) and (x,+n)
are written xl...l and xr ...r respectively and are
called iterated left and right adjoints. The rules
are of two kinds: cups and triangles. Cups have
the shape (x, z)(x, z + 1) → 1 for z ∈ Z, i.e. they
cancel a basic type with its right adjoint. Triangles
have the shape w → t for a word w ∈ V and a type

1 We only consider finite dimensional vector spaces.
2A diagram is progressive when its wires go monotonously

top to bottom, i.e. they do not bend up or down.
3A diagram is planar when its wires do not cross.

t ∈ (X ×Z)?. Note that we draw words as the labels
of triangle boxes rather than as input wires.
A pregroup grammar G = (V, X, R, s) defines a

rigid signature: the generating objects are given by
words and types V + X , the generating arrows are
given by dictionary entries w → t ∈ R. Thus, it
generates a free rigid monoidal category G where
the object are sequences of words and types with
iterated adjoints, the arrows are planar string di-
agrams with triangles as boxes. Cups are given
by the rigid structure of G, they are drawn as bent
wires. Again, the language of G is defined as
{x ∈ V? | ∃ g : x → s ∈ G}.
The main distinction between Chomsky’s phrase

structure grammars and the categorial grammar
tradition of Adjukiewicz, Bar-Hillel and Lambek is
that in the latter “all the grammar is in the lexicon”.
The only language-dependent rules are dictionary
entries of the form r : w → t for a word w ∈ V and
a type t ∈ Ob(G). They are drawn as triangle boxes.
All the grammatical rules come from the structure
of the category G, e.g. the cups of pregroups
from the rigid structure. This has both conceptual
and computational advantages. Conceptually, it
makes categorial grammars universal: the same
rules apply to all languages, only the dictionaries
change. Computationally, these universal rules
have a canonical semantics, thus it is enough to
define the meaning of each dictionary entry.
Definition 1.2. A DisCoCat model is a rigid
monoidal functor F : G → Vect from the cate-
gory generated by a pregroup grammar. On ob-
jects F is defined by a mapping F0 : X → N

which sends each basic type to the dimension
of a vector space. The image of word types
w ∈ V is the monoidal unit F(w) = 1, the im-
age of complex types t = (x1, z1). . .(xn, zn) is the
product of the dimensions of their basic types
F(t) = F0(x1). . .F0(xn). On arrows F is defined
by a mapping F1 ∈

∐
(w,t)∈R R

F(t) that sends each
dictionary entry (w, t) ∈ R to a vector F(w, t) ∈ Rn

for n = F(t) the dimension of its type. Cups are
sent to the rigid monoidal structure of Vect. The
meaning of a sentence g : x → s is given by the
vector F(g) ∈ Rm for m = F(s) the dimension of
the sentence type. When F(s) = 1, the meaning of
sentences is given by real-valued scalars that can
encode either truth value or likelihood.
Remark 1.3. DisCoCat models have been gener-
alised both in their domain and codomain: one can
vary the grammar category as in (Coecke et al.,



2013) or the semantic category as in (Piedeleu et al.,
2015; Coecke et al., 2018b; Delpeuch, 2019). While
we stick to the original definition, our proposal can
apply to any model, so long as the meaning of words
lives in some vector space, regardless of how these
word vectors are composed together.
We fix the map F0 : X → N and consider it as

the hyper-parameters of the model. All the data
defining the DisCoCat model is contained in the
finite set of vectors F1 ∈

∐
(w,t)∈R R

F(t). Thus, we
may consider these D =

∑
(w,t)∈R F(t) parameters

as a machine learning landscape. The idea of
functorial learning is to take a training set of pairs
X ⊆ Ar(G)× Ar(Vect) of diagrams d ∈ Ar(G) and
vectors y ∈ Ar(Vect), and learn a functor F such
that F(d) = y. In practice, this exact functor may
not exist thus we fix a loss L :

∐
n∈N R

n×Rn → R+

and a regularisation R : RD → R+ then using
gradient-based methods we approximate:

arg min
F :G→Vect

R(F1) +
∑
(d,y)∈X

L
(
F(d), y

)
Example 1.4. Fix a type q ∈ X for yes-no questions
with F(q) = 1, i.e. the meaning of a question d :
w1...wn → q is a scalar F(d) ∈ R. Take a training
set of such questions together with their answer in
{0, 1} ⊆ R. Then the functor F may be seen as a
DisCoCat model for question-answering, see (de
Felice et al., 2019). This model has been deployed
on quantum hardware, see (Meichanetzidis et al.,
2020a,b; Coecke et al., 2020).

2 Functorial language models

The definition of DisCoCat models can be recast
in terms of encoding matrices, first introduced in
(Toumi, 2018; Coecke et al., 2018a). The set of
meaning vectors F1 ∈

∐
(w,t)∈R R

F(t) can be packed
into a set of matrices Et : |Vt | → F0(t) indexed
by grammatical types t ∈ (X × Z)?, where Vt ⊆ V
is the set of words w ∈ V with (w, t) ∈ R. If we
compose the matrix Et with the one-hot vector for
a word w : 1 → |Vt |, we get its image under the
functor F(w, t) = w o

9 Et . In the other direction, if
we compose a meaning (co)vector v : F0(t) → 1
with Et , we get a (co)vector Et

o
9 v : |Vt | → 1 which

gives its inner product with the words in Vt . The
key insight of our functorial language models is to
take softmax(Et

o
9 v) as the probability distribution

over words in Vt given a meaning v : F0(t) → 1.
Remark 2.1. softmax is not a linear map, hence
technically we cannot draw it as a box in a Vect-

valued diagram. We can however draw it as a
bubble, see (Toumi et al., 2021). We can then
consider functors which send bubbles to softmax.
Fix a corpus of grammatical sentences X ⊆∐
x∈V? G(x, s) and assume F(s) = 1, i.e. the

meaning of sentences are scalars. We generate
a training set from this by taking each sentence
d : w1...wn → s, removing one dictionary entry
wi → ti by replacing it with the identity ti → ti.
Thus, we get a diagram di : ti → s and take the
one-hot vector for the word wi as target label. Intu-
itively, given the diagram of a sentence with a hole,
we want to predict what word is missing.

This does not yet define a language model in the
usual sense, indeed we are assuming that text data
comes annotated with grammatical structure. That
is, we are computing the conditional distribution
P(w |d) over words w ∈ Vt of type t ∈ Ob(G) given
the grammatical structure d : t → s in which
they occur. In order to get a language model, we
need to compose this conditional with a distribution
P(d |w1...wn) over diagrams given word sequences:
a probabilistic grammar. Learning this distribution
from data is called probabilistic grammar induction,
which (Shiebler et al., 2020) formulate in terms of
monoidal categories. In future work, we plan to
train our functorial language model end-to-end on
raw text data, i.e. learning both the probabilistic
grammar and the DisCoCat model at once.

3 Implementation

We implemented a proof-of-concept in DisCoPy
(de Felice et al., 2020) and used jax (Bradbury et al.,
2020) for automatic differentiation and just-in-time
compilation on GPU. We initialise the encoding
matrices at random and use singular value decom-
position to obtain word vectors that are close to
orthogonal. We used cross-entropy loss, a weighted
sum of l1 and l2 (1e−1 and 5e−2 resp.) regularisa-
tion and Adam optimization (Kingma and Ba, 2017)
(learning rate= 5e−2). We set the hyper-parameters
to F(s) = 1 and F(n) = 7. After training on a sub-
set of hand-crafted data (~100 sentences with three
distinct grammatical structures), the model was
able to infer the missing word in previously unseen
sentences with accuracy > .75, see appendix A.
The notebook can be found on DisCoPy’s GitHub.
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A Experiment
We reproduce our hand-crafted dataset together with some
sample predictions from our model. In the following cherry-
picked examples, the prediction is correct in the first three cases
and incorrect in the last one. This failure can be explained by
the fact the word “krill” only appears once in the training set.

nr

s

nln n
?cat fish

Target: eats

Prediction: eats (0.60), bites (0.35), flees (0.05)

nr sn sr nrr nr s nl n
?fox after chicken

Target: chases

Prediction: chases (1.00)

nn nr s sr nrr nr

s

nl
?seal swims in

Target: water

Prediction: water (0.97), dog (0.02)

nn nr

s

nl
?whale eats

Target: krill

Prediction: cheese (0.53), fish (0.17), grain (0.10)

? runs after mouse (cat)
? runs on land (seal)
dog chases after ? (fox)
? barks at fox (dog)
whale eats ? (krill)
fox flees ? (dog)
dog barks at ? (fox)
seal swims in ? (water)
chicken runs on ? (land)
dog bites ? (bone)
fox chases after ? (chicken)
cat ? fish (eats)
dog ? cat (bites)
chicken ? fox (flees)
mouse ? (squeaks)
cat ? (meows)
fish ? (swims)
fox ? after chicken (chases)
fish ? in water (swims)
cat chases ? mouse (after)
mouse runs ? land (on)
cat runs ? land (on)

dog chases ? fox (after)

Figure 1: Testing set (23 sentences)

? runs after chicken (fox)
mouse runs on ? (land)
seal eats ? (fish)
cat eats ? (fish)
? runs after fox (dog)
dog runs after ? (fox)
dog runs on ? (land)
? swims (seal)
? squeaks (mouse)
chicken eats ? (grain)
fox chases ? (chicken)
seal runs on ? (land)
cat chases ? (mouse)
cat runs on ? (land)
? runs after cat (dog)
cat runs after ? (mouse)
whale swims in ? (water)
mouse flees ? (cat)
dog eats ? (bone)
fox runs on ? (land)
? chases after chicken (fox)
? swims in water (seal)
fish swims in ? (water)
cat chases after ? (mouse)
fox runs after ? (chicken)
fox bites ? (chicken)
? barks at cat (dog)
? chases (fox)
mouse bites ? (cheese)
? chases after cat (dog)
? barks (dog)
? chases after fox (dog)
? chases after mouse (cat)
? clucks (chicken)
mouse eats ? (cheese)
cat bites ? (fish)
chicken flees ? (fox)
fox eats ? (chicken)
? meows (cat)
dog chases ? (fox)
? runs (seal)
cat flees ? (dog)
seal ? fish (eats)
mouse ? cheese (eats)
dog ? fox (bites)
whale ? krill (eats)
dog ? bone (eats)
fox ? chicken (eats)
chicken ? grain (eats)
cat ? dog (flees)
mouse ? cat (flees)
cat ? mouse (bites)
fox ? dog (flees)
chicken ? (clucks)
dog ? (barks)
chicken ? on land (runs)
whale ? (swims)
mouse ? on land (runs)
dog ? at cat (barks)
seal ? on land (runs)
cat ? on land (runs)
whale ? in water (swims)
dog ? at fox (barks)
dog ? on land (runs)
dog ? after fox (chases)
fox ? (chases)
seal ? (runs)
seal ? in water (swims)
cat ? after mouse (chases)
fox ? on land (runs)
dog ? after cat (chases)
seal runs ? land (on)
seal swims ? water (in)
fish swims ? water (in)
fox runs ? land (on)
fox chases ? chicken (after)
fox runs ? chicken (after)
whale swims ? water (in)
dog runs ? cat (after)
cat runs ? mouse (after)
dog runs ? fox (after)
dog barks ? fox (at)
dog barks ? cat (at)
dog runs ? land (on)
chicken runs ? land (on)

dog chases ? cat (after)

Figure 2: Training set (86 sentences)


