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The pebbling comonad, introduced by Abramsky, Dawar, and Wang, gave a categorical semantics
to the k-pebble games used in finite model theory. They showed that the coKleisli category of the
pebbling comonad can be used to give characterizations of equivalence under fragments and extensions
of infinitary k-variable logic. Moreover, the coalgebras over this pebbling comonad correspond to
tree decompositions and characterize treewidth of a structure. In this paper, we investigate the pebble-
relation comonad whose coalgebras correspond to path decompositions and characterize pathwidth.
We also demonstrate how coKleisli morphisms of the pebble-relation comonad give a categorical
semantics to Duplicator’s winning strategies in Dalmau’s pebble-relation game. Consequently, the
coKleisli morphisms characterize preservation under a restricted conjunction fragment of existential
positive infinitary k-variable logic.

1 Introduction

Model theory is a field in which mathematical structures are not seen “as they really are” (i.e. up to
isomorphism), but through the fuzzy glasses imposed by definability in a logic J . Namely, given two
structures over the same signature A and B, model theory is concerned with equivalence under the
relation:

A ≡J B := ∀ϕ ∈J ,A � ϕ ⇔B � ϕ

Historically, a theme in model theory has been to find syntax-free characterizations of these equivalences.
This is exemplified by the Keisler-Shelah theorem [15] for first-order logic. These equivalences are
also characterized by model-comparison, or Spoiler-Duplicator games. Spoiler-Duplicator games are
graded by a (typically, finite) ordinal that corresponds to a grading of some “syntactic” resource. For
example, the k-pebble game introduced by [9] characterizes equivalence in infinitary logic graded by the
number of variables k. In [1], this game, and two similar variants, were given a semantics in terms of
morphisms involving the pebbling comonad, Pk. Since then, similar game comonads have been found for
Ehrenfeucht-Fraïssé games, modal-bisimulation games [4], games for guarded logics [2], and games for
finite-variable logics with generalised quantifiers [6].

Remarkably, in all of these cases, the coalgebras over the game comonad correspond to decompositions
of structures, such as tree decompositions of width < k (in the case of Pk) and forest covers of height ≤ k
(in the case of the Ehrenfeucht-Fraïssé comonad, Ek). An immediate corollary of these correspondences
are novel definitions for an associated graph parameter, such as treewidth (for Pk) and tree-depth (for Ek).
In the present paper, we widen the domain of these game comonads by investigating a pebble-relation
comonad PRk where the coalgebras correspond to path decompositions of width < k; yielding a new
definition of pathwidth.
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In [1], Abramsky et. al. showed that the coKleisli morphisms associated with Pk correspond to
Duplicator’s winning strategies in the one-sided k-pebble game. This one-sided game, introduced in [11],
was used to study expressivity in Datalog, preservation of existential positive formulas of k-variable logic
∃+L∞, and PTIME-tractable constraint satisfaction problems. Dalmau in [7] developed an analogous
one-sided pebble-relation game that he used to study expressivity in linear Datalog, preservation of a
restricted conjunction fragment of existential positive k-variable logic ∃+Nk, and NLOGSPACE-tractable
constraint satisfaction problems. Utilizing Dalmau’s results and a general fact about comonads, we are
able to show that coKleisli morphisms of our comonad PRk correspond to winning strategies in this
pebble-relation game. We then obtain this result directly. Curiously, there are features of the pebble-
relation game, that ensure that this direct proof utilizes ideas distinct from the arguments used for the
other game comonads explored in [1, 4, 6].

In section 2, we introduce our notation and necessary background. In section 3, we explain the
emerging notion of a Spoiler-Duplicator game comonad and the associated family of results that have
accompanied them. In section 4, we introduce our central contribution, the pebble relation comonad PRk,
and demonstrate the relationship between PRk and Pk. In section 5, we prove that coalgebras over PRk
correspond to path decompositions of width < k, providing a coalgebraic characterization of pathwidth.
In section 6, we introduce Dalmau’s one-sided pebble-relation game, the novel variants of this game, and
how winning strategies for Duplicator in these games are captured through morphisms involving PRk.
In section 7, we conclude the paper with a summary of results and point out further directions of this
comonadic view to descriptive complexity.

2 Background

In this section, we will establish some notational preliminaries and give a short introduction to the relevant
concepts in category theory and finite model theory that we will need.

2.1 Set notations

Given a poset, i.e. a set with a partial order, (X ,≤) and x ∈ X , we denote the down and up sets as
↓ x = {y ∈ X | y ≤ x} and ↑ x = {y ∈ X | y ≥ x}. A poset (X ,≤) is a linear order, or a directed path,
if for every pair of elements x,y ∈ X , x ≤ y or y ≤ x, i.e. every element is comparable. If (T,≤) is a
poset, such that for every x ∈ T , ↓ x is linearly ordered by ≤, then ≤ forest orders T and (T,≤) is a
forest. If (T,≤) is a forest and the exists a least element ⊥ ∈ T , such that for all x ∈ T , ⊥≤ x, then ≤
tree orders T and (T,≤) is a tree. In the presence of a forest order, we will also use interval notation, i.e.
(x,x′] = {y | x < y≤ x′)} and [x,x′] = {y | x≤ y≤ x′}.

For a positive integer n, we will write [n] for the set {1, . . . ,n}. When convenient, we will consider
[n] as having the usual order on segments of natural numbers ≤. Given a set A, we will denote the set
of finite sequences of elements A as A∗ and non-empty finite sequences as A+. The set of sequences of
length ≤ k is denoted A≤k. We will denote a sequence of elements a1, . . . ,an ∈ A as [a1, . . . ,an] and the
empty sequence as ε . We write |s|= n for the length of sequence s = [a1, . . . ,an]. Given two sequences
s, t ∈ A∗, we will denote the concatenation of s followed by t by juxtaposition, i.e. st. If s is such that
there exists a (possibly empty) sequence s′ where ss′ = t, then we write s v t. Observe that v defines
a relation on sequences and tree orders A∗ and forest orders A+. For s = [a1, . . . ,an] and i, j ∈ [n], let
s(i, j] = [ai+1, . . . ,a j] if i < j or ε if i≥ j; and let s[i, j] = [ai, . . . ,a j] if i≤ j or ε if i > j.
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2.2 Category Theory

We will assume the reader is familiar with standard the category-theoretic notions of category, functor,
and natural transformation. Given a category C, the class of objects will be denoted as C0 and the class of
morphisms C1. If X ,Y ∈ C0, then the class of morphisms from X to Y is denoted C(X ,Y ). Some readers
may be familiar with the notion of a comonad; an important class of endofunctor. We will need the more
general notion of a relative comonad introduced in [5] which weakens this endofunctor requirement.
Given a functor J : J→ C, a relative comonad on J is a triple (T,ε,(·)∗) where

• T : J0→ C0 is an object mapping.

satisfying the following equations:

ε
∗
X = idTX , ε ◦ f ∗ = f , (g◦ f ∗)∗ = g∗ ◦ f ∗.

These equations allow us to extend the object mapping T to a functor, where T f := (J f ◦ εX)
∗ for

f : X → Y . For every relative comonad (T,ε,(·)∗) over J : J→ C, we can define an associated Kleisli
category, denoted K (T), where

• K (T)0 is the same as the class of objects J0

• K (T)1 are morphisms of the type f : TX → JY ∈ C1

• The composition g◦K f : TX → JZ of morphisms f : TX → JY and g : TY → JZ is given by

TX
f ∗−→ TY

g−→ JZ

• The identity morphisms are given by the counit εX : TX → JX

The ordinary notion of a comonad in coKleisli form [12], and the corresponding Klesli category, can
be recovered when J = C and J = idC. Given a ordinary comonad in coKleisli form, we can define a
comultiplication morphism δX : TX → TTX where δX := (idTX)

∗ which satisfies the following equations.

TδX ◦δX = δTX ◦δX , TεX ◦δX = εTX ◦δX = idTX .

The triple (T : C→ C,ε,δ ) where T is a functor is a comonad in standard form. The coKleisli form
can be recovered by defining the coextension mapping (·)∗ as f ∗ = T f ◦δ .

The category of coalgebras E M (T), or Eilenberg-Moore category associated with a comonad
(T : C→ C,ε,δ ) is specified by:

• E M (T)0 are pairs (A,α : A→ TA) with A ∈ C0 and α ∈ C1 such that following diagrams commute
in C:

A TA

TA T2A

α

α δA

Tα

A TA

A

α

idA

εA

• E M (T) are morphisms f : A→ B ∈ C1 from (A,α : A→ TA) to (B,β : B→ TB) such that the
following diagram commutes in C:

A TA

B TB

α

f T f

β
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• The identity morphisms and composition are inherited from C

Monads and comonads are closely linked to adjunctions. Recall that an adjunction, denoted L a R, is
a pair of functors L : C→ D and R : D→ C together with natural transformations η : idC → RL, and
ε : LR→ idD such that the maps θA,B : C(A,RB)→D(LA,B) and θ ′A,B : D(LA,B)→ C(A,RB) given by

are mutually inverse.
Conversely, every comonad (T,ε,δ ) arises from an adjunction, or resolution of T. The class of all

resolutions of a comonad T form a category. The inital object of this category is an adjunction associated
with K (T). The terminal (final) object of this category is an adjunction associated with E M (T). Hence,
for every

Observe that given a comonad (T : C→ C,ε,()∗) and functor J : J→ C, the functor TJ = T◦ J can
be made into a relative comonad (TJ,ε ′,()′) on J where ε ′X = εJX and coextension mapping ()

′
is defined

for f : TJX → JY to be f
′
= f ∗ : TJ → TJY .

2.3 Finite Model Theory

We will assume a fixed vocabulary σ of relational symbols R each with a positive integer arity m = ρ(R).
If ρ(R) = m, we will say R is an m-ary relation. A σ -structure A is specified by a universe of elements A,
and interpretations RA ⊆ Am of each m-ary relation R ∈ σ . We will use calligraphic and boldface letters
(e.g. A ,B,C ,P,Q,S etc.) to denote σ -structures and the corresponding roman letters (e.g. A,B,C,P,Q,S
etc.) to denote the underlying universe of elements.

Let A and B be σ -structures. If B ⊆ A and RB ⊆ RA for every relation R ∈ σ , then B is a σ -
substructure of A . If B⊆ A, then we can form the B induced σ -substructure, B = A |B with universe B
and interpretations RB = RA ∩Bm for m-ary relation R ∈ σ . The graph G (A ) = (A,_) is the Gaifman
graph of A where a _ a′ iff a = a′ or a,a′ appear in some tuple of RA for some R ∈ σ .

A σ -morphism from A to B, or homomorphism, denoted h : A →B, is a set function h : A→ B such
that RA (a1, . . . ,am)⇒ RB(h(a1), . . . ,h(am)) for every m-ary relation R ∈ σ . If h : A→ B additionally
satisfies RB(h(a1), . . . ,h(am))⇒ RA (a1, . . . ,am) for every m-ary relation R ∈ σ , then h : A → B is
called strong. We will denote the category of σ -structures with σ -morphisms as R(σ). If there exists an
h : A →B, we write A →B, and say that A homomorphically maps to B. If h : A →B is a strong
injective σ -morphism, then we write h : A �B. If there exists an h : A �B, we write A �B, and
say that A embeds into B.

2.4 Logical Fragments

We are mainly concerned with fragments of infinitary logic. Infinitary logic, L∞ has the standard syntax
and semantics of first-order logic, but where disjunctions and conjunctions are allowed to be taken over
arbitrary sets of formulas. We denote formulas with free variables among x = (x1, . . . ,xn) as φ(x). The set
of formulas in L∞ with symbols in signature σ is L∞(σ). If A is a σ -structure a∈ An and φ(x)∈L∞(σ)
and A ,a satisfies φ(x), then we write A ,a � φ(x). The infinitary logic can be graded into k-variable
fragments, denoted Lk, where formulas can only contain at most k-many variables. We will also consider
infinitary logic L∞ graded by quantifier rank ≤ k, denoted L k. Observe that for finite signatures σ (i.e.
only finitely many relational symbols), L k is equivalent to ordinary first-order logic graded by quantifier
rank ≤ k.

For every logic J we consider, we will also be interested in three variants. The first variant is the
primitive positive fragment ∃pJ where we will only consider formulas built using existential quantifiers,
conjunction, and atomic formulas. The second variant is the existential positive fragment ∃+J where
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we will only consider formulas built using existential quantifiers, disjunctions, conjunctions, and atomic
formulas. The last variant is the extension of J with counting quantifiers #J . These are quantifiers
of the form ∃≤m and ∃≥m where the semantics of A � ∃≤mxψ(x) is that there exist at most m distinct
elements of A satisfying ψ(x).

A restricted conjunction (disjunction) is a conjunction (disjunction) of the form
∧

Ψ (
∨

Ψ) where Ψ

is a set of formulas satisfying the condition:
(R) At most one formula in Ψ having quantifiers is not a sentence.
The motivation of this paper is to study the restricted conjunction fragment ∃+Nk of ∃+Lk where all

formulas are built using existential quantifiers, disjunctions, restricted conjunctions, and atomic formulas.
Given two σ -structures A and B, if for all sentences φ ∈J (σ), A � φ ⇒B � φ , then we write

A VJ B. If A VJ B and BVJ A , then A ≡J B. For logics J closed under negation, we have
that A VJ B implies A ≡J B.

2.5 Spoiler-Duplicator games

The relations VJ and ≡J for specific choices of J are characterized, in a syntax-free fashion, by
Spoiler-Duplicator games (also called model-comparison games or Ehrenfeucht-Fraïssé style games). We
will consider two structures A and B. Each game has two players. Spoiler, who is trying to show that
two structures are different under J and Duplicator, who is trying to show the two structures are the
same under J (i.e A ≡J B). Each game is played in a number of rounds.

• For the Ehrenfeucht-Fraïssé game EFk(A ,B) characterizing ≡L k
, at each n-th round, n ∈ [k]:

– Spoiler chooses an element in either structure an ∈ A or bn ∈ B.
– Duplicator chooses an element in the other structure bn ∈ B or an ∈ A.

At the end of the n-th round, a pair of sequences [a1, . . . ,an] and [b1, . . . ,bn] were chosen. If the
relation γn = {(a j,b j) | j ∈ [n]} is a partial isomorphism from A to B, then Duplicator wins the
n-th round. Otherwise, Spoiler wins. Duplicator has a winning strategy in EFk(A ,B) if for every
move Spoiler makes in the k-round game, Duplicator has a corresponding winning move. For this
game, the resource is the number of rounds k corresponding to the syntactic resource of quantifier
rank in the definition of L k.

• For the pebbling game Pebk(A ,B) characterizing ≡Lk , Spoiler and Duplicator both have a set of
k pebbles. At each n-th round, n ∈ ω:

– Spoiler places some pebble pn ∈ [k] on an element in either structure an ∈ A or bn ∈ B. If the
pebble pn ∈ [k] was already placed on a previous element, the player moves the pebble from
that element to the newly chosen element.

– Duplicator places their pebble pn ∈ [k] on an element in the other structure bn ∈ B or an ∈ A.

At the end of the n-th round, a pair of sequences s= [(p1,a1), . . . ,(pn,an)] and t = [(p1,b1), . . . ,(pn,bn)]
where chosen. For every p ∈ [k], let ap = lastp(s) and bp = lastp(t) be the last element pebbled
with p in s and t (respectively). If the relation γn = {(ap,bp) | p ∈ [k]} is a partial isomorphism
from A to B, then Duplicator wins n-th round of the k-pebble game. Duplicator has a winning
strategy in Pebk(A ,B) if for every round n ∈ ω and move by Spoiler in the n-th round, Duplicator
has a winning move. For this game, the resource is the number of pebbles k corresponding to the
syntactic resource of variables in the definition of Lk.

For both of the games Gk = EFk(A ,B) or Gk = Pebk(A ,B), we can consider one-sided variants
∃Gk = ∃EFk(A ,B) or ∃Gk = ∃Pebk(A ,B) (respectively). These games characterize A V∃

+L k
B and
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A V∃
+Lk B (respectively). The one-sided variants are obtained by restricting Spoiler to only choose

(or place a pebble) on elements of A and consequently, Duplicator only plays in B. We also relax the
winning condition so that the relation γ is only required to be a partial homomorphism from A to B.

Additionally, we can also consider bijection variants of these games #Gk = #EFk(A ,B) or #Gk =
#Pebk(A ,B). For both games, Spoiler automatically wins if there does not exist a bijection between
A→ B. At each n-th round in both games, Duplicator chooses a bijection fn : A→ B. In the case of
#EFk(A ,B), Spoiler chooses an element a ∈ A. Duplicator wins the n-th round of #EFk(A ,B) if the
relation γ = {(a j, f j(a j)) | j ∈ [n]} is a partial isomorphism. In the case of #Pebk(A ,B), Spoiler plays
first by placing a pebble p on an element a ∈ A and Duplicator responds with a bijection fn : A→ B that is
consistent with the previously placed pebbles, i.e. for every q 6= p such that (aq,bq) ∈ γn−1, fn(aq) = bq.
Duplicator wins the n-th round of #Pebk(A ,B) if the relation γ = {(ap, fn(bp)) | p ∈ [k]} is a partial
isomorphism.

Capturing these games as constructions on the category of relational structures has been the underlying
theme of the research program motivating this paper.

3 Spoiler-Duplicator game comonads

The larger research program motivating this paper is the emerging notion of a Spoiler-Duplicator game
comonad Ck associated with logic J graded by a resource k. Though this notion of a Spoiler-Duplicator
game comonad has no formal definition, each of the papers [1, 4, 6, 2] define specific indexed families
of comonads Ck over R(σ) that all exhibit the same pattern of results: a family of morphism-power
theorems, a coalgebra characterization theorem, and a parameterized Chandra-Merlin correspondence. In
this section, we will go over the general scheme for each of these of results. Throughout, we will also
state the result for the specific cases of the Ehrenfeucht-Fraïssé comonad Ek and pebbling comonad Pk.

We first define the Ehrenfeucht-Fraïssé comonad (Ek,ε,()
∗). Given a σ -structure A , we define the

universe of EkA as A≤k−{ε}. The counit morphism εA : EkA →A is defined as the last element of
the sequence, i.e εA ([a1, . . . ,an]) = an. The coextension of a morphism of type f : EkA →B is defined
as f ∗[a1, . . . ,a j] = [b1, . . . ,b j] where f [a1, . . . ,ai] = bi for all i ∈ [j]. To define the σ -structure on EkA ,
suppose R ∈ σ is an m-ary relation:

REkA (s1, . . . ,sm)⇔ i, j ∈ [m],si v s j or s j v si pairwise comparable

and RA (εA (s1), . . . ,εA (sm)) compatibility

Intuitively, EkA is the set of Spoiler plays in k-round Ehrenfeucht-Fraïssé game on the structure A .
The pairwise comparability condition is used in the interpretation of relations in order to ensure that plays
are only related when they are fragments of the same Spoiler play.

We define the pebbling comonad (Pk,ε,()
∗). Given a σ -structure A , we define the universe of

PkA as ([k]×A)+. The counit morphism εA : PkA →A is defined as the second component of the last
element of the sequence, i.e εA [(p1,a1), . . . ,(pn,an)] = an. The coextension of a morphism f : PkA →B
is defined as f ∗[(p1,a1), . . . ,(pn,an)] = [(p1,b1), . . . ,(pn,bn)] where f [(p1,a1), . . . ,(pi,ai)] = bi for all
i ∈ [n]. To define the σ -structure on PkA , we will need some notation. The mapping πA : PkA→ [k]
is defined as the first component of the last element of the sequence, i.e πA[(p1,a1), . . . ,(pn,an)] = pn.
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Suppose R ∈ σ is an m-ary relation, then:

RPkA (s1, . . . ,sm)⇔ i, j ∈ [m],si v s j or s j v si pairwise comparable

and πA(si) does not appear in the suffix of si in s j for any si v s j active pebble

and RA (εA (s1), . . . ,εA (sm)) compatibility

Just as with the Ek case, PkA can be seen as the set of Spoiler plays in the k-pebble game on the
structure A . The additional active pebble condition models how Spoiler’s choice of k pebble placements
is moving a k- sized window of variables being assigned to elements in the structure A . When working
with PkA , we will use the notation lastp(s) to denote the last element a ∈A in the sequence s pebbled
by p ∈ [k]. The set of active elements of s is then Active(s) = {lastp(s) | p ∈ [k]}. Given an s ∈ PkA and
t ∈ PkB we can form the relation of pebbled elements γs,t = {(lastp(s), lastp(t))} ⊆ A×B.

3.1 Morphism Power Theorems

Given a logic Jk graded by some syntactic resource k and corresponding modal comparison game Gk,
the Spoiler-Duplicator comonad associated with Gk is an indexed family of comonads Ck over R(σ).
We can then leverage the Kleisli category K (Ck) associated with Ck to capture the preservation relation
V∃

+Jk of the sentences in the existential-positive fragment of Jk limited by the resource k.

Theorem (Morphism Power Theorem). For all σ -structures A , B, the following are equivalent:

1. Duplicator has a winning strategy in ∃Gk(A ,B)

2. A V∃
+Jk B

3. There exists a coKleisli morphism f : CkA →B

For each Ck, we can define the relation→C
k where A →C

k B if there exists a coKleisli morphism
f : CkA →B.

Theorem. In the case of Ek and Pk, we have the following morphism-power results:

• A →E
k B⇔A V∃

+L k
B⇔ Duplicator has a winning strategy in ∃EFk(A ,B) [4]

• A →P
k B⇔A V∃

+Lk B⇔ Duplicator has a winning strategy in ∃Pebk(A ,B) [1, 4]

Ostensibly, the asymmetry of a coKleisli morphism means that only the “forth” aspect of the game
G (i.e. the game ∃G) can be captured by this comonadic approach. A natural candidate for capturing
the symmetric game would be to consider the symmetric relation of coKleisli isomorphism, i.e. there
exists morphisms f : CkA →B and g : CkB→A such that g◦K f = εA and f ◦K g = εB. However,
this relation turns out be too strong and characterizes equivalence in a logic stronger than Jk. The
isomorphisms in K (Ck) characterize the equivalence relation ≡#Jk for the logic Jk extended with
counting quantifiers.

Theorem (Isomorphism Power Theorem). For all finite σ -structures A , B, the following are equivalent:

1. Duplicator has a winning strategy #Gk(A ,B)

2. A ≡#Jk B

3. There exists a coKleisli isomorphism f : CkA →B, g : CkB→A

For each Ck, we can define the relation ∼=C
k where A ∼=C

k B if there exists a coKleisli isomorphism
between A and B.
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Theorem. In the case of Ek and Pk, we have the following isomorphism-power results:

• A ∼=E
k B⇔A ≡#L k

B⇔ Duplicator has a winning strategy in #EFk(A ,B) [4]

• A ∼=P
k B⇔A ≡#Lk B⇔ Duplicator has a winning strategy in #Pebk(A ,B) [1, 4]

Since isomorphism is too strong, we need to define a different symmetric relation on the objects of
R=R(σ). In order to do this, we utilize a variant of the established notion of an open map bisimulation of
Joyal, Nielsen, and Winksel [10], in the category of coalgebras RCk . Since this new notion of bisimulation
is constructed in the category of coalgebras, we discuss the bisimulation power theorem in section 3.2.

3.2 Coalgebras and adjunctions

A natural question for the comonads Ck is to understand the category of coalgebras E M (Ck). Beautifully,
for all the cases of Ck constructed from some game Gk, the coalgebras A → CkA correspond to forest
covers of structures A .

Theorem (Coalgebra Characterization). There is a bijective correspondence:

1. A has a forest cover of parameter ≤ k

2. There exists a coalgebra α : A → CkA

In the case of Ek, the coalgebras of A → EkA correspond to forest covers of G (A ) of height k.
Given a undirected graph G = (V,_), a forest cover of G is tree-order (F,≤) where F =V and v _ v′ ∈G
implies that v≤ v′ or v′ ≤ v. The height of the forest cover (F,≤) is the length of the longest path in the
forest F . The tree-depth of a structure td(A ) is the minimum height of a forest covers (F,≤) of G (A ).

Theorem. There is a bijective correspondence between:

1. Forest covers of G (A ) of height ≤ k

2. Ek-coalgebras α : A → EkA

In the case of Pk, the coalgebras of A → PkA correspond to k-pebble forest covers over G (A ). A
k-pebble forest cover of a graph G is a triple (F,≤, p : F → [k]) where (F,≤) is a forest cover of G and p
is pebble assignment function such that if v _ v′ and v ≤ v′, then for all w ∈ (v,v′], p(v) 6= p(w). This
notion was introduced in [1], under the name k-traversal, to provide a bridge between Pk-coalgebras and
the graph-theoretic notion of a tree decomposition of G of width < k.

Theorem. The following are equivalent:

1. G (A ) has a tree decompositions of width < k

2. G (A ) has a k-pebble forest cover (i.e. there exists a Pk-coalgebra α : A → PkA )

We will introduce tree decompositions, and the linear variant–path decompositions, in section 5. The
associated combinatorial invariant is the treewidth of a structure tw(A ) which is the minimum width of a
tree decomposition of G (A ).

These results allows us to obtain coalgebraic characterizations of the combinatorial invariants that
correspond to the tree-like decomposition. Namely, for every game comonad Ck, we define the C-
coalgebra number of A to be the least k, denoted κC(A ), such that there exists a coalgebra A → CkA .

• For all finite σ -structures A , κE(A ) = td(A )

• For all finite σ -structures A , κP(A ) = tw(A )+1
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The bijective correspondence between forest covers of a certain type, k-height or k-pebble, and
coalgebras over Ek and Pk (respectively) can actually be extended to isomorphisms of the respective
categories. That is, the category of k-height forest covers is isomorphic to E M (Ek). Similarly, the
category of k-pebble forest covers is isomorphic to E M (Pk). In the language of adjunctions, for every
Ck, we can form a category of forest-ordered σ -structures TC

k (σ) consisting of:

• TC
k (σ)0 are pairs (A ,≤) where A ∈R(σ)0 and ≤ forest-orders the universe A of A such that the

following condition holds:

(E) if a _ a′ ∈A , then a≤ a′ or a′ ≤ a.

• TC
k (σ)1 are σ -morphisms f : A →B ∈R(σ)1 that preserve the ordering relation.

• The identity and composition are inherited from R(σ).

Evidently, there exists a forgetful functor Uk : TC
k (σ)→R(σ). We can realize Ck as the comonad arising

from constructing a functor Fk : R(σ)→ TC
k (σ) that is right adjoint to Uk where the adjunction Uk a Fk is

comonadic. That is, TC
k (σ) and E M (Ck) are equivalent categories.

Theorem. In the case of Ek and Pk we have the following constructions:

• For the case of Ek, the right adjoint Fk is given by FkA = (EkA ,v) where TE
k (σ) is the category

of tree-ordered structures of depth ≤ k.

• For the case of Pk, the right adjoint Fk is given by FkA = (PkA ,v,πA ) where TP
k (σ) is the

category of tree-ordered structures with objects (A ,≤A , p) equipped with an additional pebbling
function p : A→ [k] satisfying the condition:

(P) if a _ a′ and a≤A a′, then for all b ∈ (a,a′]A , p(a) 6= p(b).

Morphisms in TP
k (σ) also preserve the pebbling the function.

3.2.1 Bisimulation power theorem

Rendering the category of coalgebras of Ck as forest covers allows us to define a categorical notion
of bisimulation between structures ↔C

k . We use this notion of bisimulation in order. Alongside the
morphism and isomorphism power theorems, such a bisimulation power theorem completes a picture that
demonstrates Ck gives a syntax-free definition to three variants of the associated logic Jk.:

Given a subcategory of “path” objects RP ↪→RCk , an RP-open morphism is a morphism h : (A ,α)→
(B,β ) such that for every embedding (P, p)� (Q,q) ∈RP satisfying the diagram in RCk :

(P, p) (Q,q)

(A ,α) (B,β )
h

there exists an embedding (Q,q)� (A ,α) making the following diagram commute in RCk :

(P, p) (Q,q)

(A ,α) (B,β )
h

This allows us to establish an intermediate power theorem demonstrating that Ck can be used to capture
equivalence in the logic Jk.
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Theorem (Bisimulation Power Theorem). For all σ -structures A ,B, the following are equivalent:
1. Duplicator has a winning strategy Gk(A ,B)

2. A ≡Jk B

3. There exists a span of RP-open coalgebra morphisms:

(R,ρ)

(CkA ,δA ) (CkB,δB)

f g

For each Ck we associate a subcategory of path objects RP ↪→RCk , this allows us define the relation
↔C

k where A ↔C
k B if there exists a span of RP-open coalgebra morphisms (CkA ,δA )← (R,ρ)→

(CkB,δB).
Theorem. In the case of Ek and Pk, we have the following bisimulation-power results:
• A ↔E

k B⇔A ≡L k
B⇔ Duplicator has a winning strategy in EFk(A ,B) [4]

• A ↔P
k B⇔A ≡Lk B⇔ Duplicator has a winning strategy in Pebk(A ,B) [1, 4]

We now turn to the grading structure of the family of comonads Ck. Namely, for k ≤ l, there is
comonad inclusion Ck ↪→ Cl . Interpreting this in terms of the game, this corresponds to the fact that
Spoiler playing with k resources is a special case of Spoiler playing with l ≥ k resources. This means the
smaller the k, the easier it is to find morphisms of the type CkA →B.

4 Pebble-relation comonad

We now introduce our main construction, a family of comonads (PRk,ε,()
∗) for every k ∈ ω over R(σ).

Given a σ -structure A , we define the universe of PRkA

PRkA := {([(p1,a1), . . . ,(pn,an)], i) | (p j,a j) ∈ [k]×A and i ∈ [n]}

Intuitively, PRkA is the set of Spoiler plays in the k-pebble game paired with an index denoting a move
of the play. The counit morphism εA : PRkA →A is defined as εA ([(p1,a1), . . . ,(pn,an)], i) = ai. The
coextension of a morphism f :PRkA →B is defined as f ∗([(p1,a1), . . . ,(pn,an)], i)= ([(p1,b1), . . . ,(pn,bn)], i)
where f ([(p1,a1), . . . ,(pn,an)], j) = b j for all j ∈ [n]. We define the σ -structure on PRkA similarly to
PkA . The mapping πA : A→ [k] is defined as πA([(p1,a1), . . . ,(pn,an)], i) = pi. Suppose R∈ σ is a m-ary
relation, then:

RPRkA ((s, i1), . . . ,(s, im))⇔ let i = max{i1, . . . , im},πA(s, i j) does not appear in s(i j, i] active pebble

and RA (εA (s, i1), . . . ,εA (s, im)) compatibility

Proposition 1. (PRk,ε,()
∗) is a comonad in coKleisli form.

Proof. It is easy to see that that PRk is the pointed-listed, or array, comonad over Set. In order to show,
that PRk is a comonad over is R(σ), we need to show that εA is a σ -morphism and that for every
f ∈R(σ)1, f ∗ ∈R(σ)1. The fact that εA is σ -morphism follows from the compatibility condition in the
definition of RPRkA . To show that f ∗ is a σ -morphism, suppose RPRkA ((s, i1), . . . ,(s, im)) and that s =
[(p1,a1), . . . ,(pn,an)]. Consider t = [(p1,b1), . . . ,(pn,bn)] where f (s, i)= bi, and therefore f ∗(s, i)= (t, i).
By construction, πA (s, i j) = πB(t, i j), so ((t, i1), . . . ,(t, im)) satisfies the active pebble condition. Since
f is a σ -morphism, RPRkA ((s, i1), . . . ,(s, im)) and εB(t, i) = bi, we have that RB(bi1 , . . . ,bim). Therefore,
the compatibility condition holds, RPRkB((t, i1), . . . ,(t, im)), and f ∗ is a σ -morphism.
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There is a comonad morphism ν : PRk→ Pk with components νA : PRkA → PkA where νA (s, i) =
s[1, i], i.e. the i-th length prefix of s.

Proposition 2. ν : PRk→ Pk is an comonad morphism.

Proof. We must confirm that ν is indeed a natural transformation, i.e. the following diagram commutes in
R(σ) for every f : A →B:

PRkA PkA

PRkB PkB

νA

PRk f Pk f

νB

It is clear that this diagram commutes, by observing that the PRk f preserves the prefix relation on
sequences. We present both comonads in standard form (PRk,ε,δ ) and (Pk,ε

′,δ ′). To confirm ν is a
comonad morphism, we must show that the following diagrams commute in the category of endofunctors
over R(σ):

PRk Pk

IdR(σ)

ν

ε
ε ′

PR2
k PRkPk P2

k

PRk Pk

PRkν ν

δ

ν

δ ′

The left diagram is stating that last pebbled element of νA (s, i) = s[1, i] is the i-th element pebble in s
which is clear by definition. To confirm the right diagram, recall that δA and δ ′A are the coextension of
idPRkA and idPkA (respectively). Explicitly, for s = [(p1,a1), . . . ,(pn,an)], we have:

δA (s, i) = ([(p1,(s,1)), . . . ,(pn,(s,n))], i)

δ
′
A (s) = [(p1,s[1,1]), . . . ,(pn,s[1,n])]

The confirmation is then straightforward:

νA ◦PRkνA ◦δA (s, i) = νA ◦PRkνA ([(p1,(s,1)), . . . ,(pn,(s,n))], i) δA as above

= νA ([(p1,νA (s,1)), . . . ,(pn,νA (s,n))], i) functoriality of PRk

= νA ([(p1,s[1,1]), . . . ,(pn,s[1,n])], i) defn of νA

= [(p1,s[1,1]), . . . ,(pi,s[1, i])] defn of νA

= δ
′
A (s[1, i]) δ

′
A as above

= δ
′
A ◦νA (s, i) defn of νA

5 Coalgebras and path decompositions

We now turn the initial motivation for the construction of a pebble-relation comonad: to give a categorical
definition for the combinatorial parameter of pathwidth. There are many different characterizations of
pathwidth. The original definition, introduced by Robertson and Seymour in [14], is in terms of path
decompositions of a structure A . This is a specialization of the notion of tree decompositions.
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Definition 1. Give a σ -structure A , a path decomposition for A is a triple (X ,≤X ,λ ) where (X ,≤X) is
a linear ordered set and λ : X →PA is a function satisfying the following conditions:

(PD1) For every a ∈ A, there exists an x ∈ X such that a ∈ λ (x), i.e. A =
⋃

x∈X λ (x).

(PD2) If a _ a′ ∈A , then a,a′ ∈ λ (x) for some x ∈ X .

(PD3) For all y ∈ [x,x′] (i.e. the interval between x,x′ w.r.t ≤), λ (x)∩λ (x′)⊆ λ (y).

The width of a path decomposition (X ,≤X ,λ ) for A is given by k = maxx∈X |λ (x)|−1.

Definition 2. The pathwidth of a σ -structure A , denoted pw(A ) is the least k such that A has a path
decomposition of width k.

The proof of [1] showing the correspondence between tree decompositions of width < k and coalgebras
over Pk made use of an intermediate structure, k-pebble forest covers. We will make use of the analogous
notion in the linearly-ordered case: k-pebble linear forest covers.

Definition 3. Given a σ -structure A , a k-pebble linear forest cover for A is a tuple (F , p) where
F = {(Si,≤i)}i∈[n] is a partition of A into linear ordered subsets and p : A→ [k] is a pebbling function
such that the following hold:

(FC1) If a _ a′ ∈A , then there exists an i such that a,a′ ∈ Si.

(FC2) If a _ a′ such that a≤i a′, then for all b ∈ (a,a′]i ⊆ Si, p(b) 6= p(a).

We aim to show that the existence of path decomposition (X ,≤X ,λ ) of width < k for A is equivalent
to the existence of a k-pebble linear forest cover for A . In order to do this, we will need to define a
pebbling function p : A→ [k]. We accomplish this by defining functions τx : λ (x)→ [k] on the subset
associated with a node x ∈ X of the path decomposition. If we define these functions in a consistent way,
then they can be “glued” together to obtain p. We use the following definition to pick out consistent
families of τx.

Definition 4. Given a path decomposition (X ,≤X ,λ ) of width < k for A , we define a k-pebbling section
family for (X ,≤X ,λ ) as a family of functions {τx : λ (x)→ [k]} indexed by x ∈ X , such that the following
hold:

• (Locally-injective) For every x ∈ X , τx is an injective function.

• (Glueability) For every x,x′ ∈ X , τx|λ (x)∩λ (x′) = τx′ |λ (x)∩λ (x′).

To make this machinery useful, we show that every path decomposition has a pebbling section family.

Lemma 3. If (X ,≤X ,λ ) is a path decomposition of width < k, then (X ,≤X ,λ ) has a k-pebbling section
family {τx}x∈X .

Proof. We prove the hypothesis:

{τz}z∈↓x is a k-pebbling section family for (Y,≤Y ,λ |Y ) where Y =↓ x and ≤Y=≤X ∩(Y ×Y )

by induction on the linear order ≤X . Base Case: Suppose r is the ≤X -least element. By 5, the cardinality
of λ (r) is ≤ k, therefore we can enumerate the elements via an injective function τr : λ (r)→ [k]. By
construction, τr is injective, so {τr} is locally-injective. Glueability follows trivially as any x ∈↓ r is equal
to r. Inductive Step: Let x′ be the immediate ≤X -successor of x. By the inductive hypothesis, there exists
a k-pebbling section family {τy}y∈↓x. Let Vx′ denote the subset of “new” elements a ∈ λ (x′) such that
a 6∈ λ (y) for any y <X x′.

Claim: For every y <X x′, λ (y)∩λ (x′)⊆ λ (x)∩λ (x′). By (PD3), for all z ∈ [y,x′], λ (y)∩λ (x′) ⊆
λ (z). In particular, since y≤X x <X x′, λ (y)∩λ (x′)⊆ λ (x). Therefore, λ (y)∩λ (x′)⊆ λ (x)∩λ (x′).
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From the claim and the definition of Vx′ , we have that λ (x′) = (λ (x)∩λ (x′))tVx′ where t denotes
disjoint union. This allows us to define τx′ : λ (x′)→ [k] by cases on each of these parts. Fix an injective
function υx′ : Vx′ → [k] enumerating Vx′ . Let {i1, . . . , im} enumerate the elements of [k] not in the image of
τx|λ (x)∩λ (x′). Define τx′ : λ (x′)→ [k] as:

τx′(a) =

{
τx(a) if a ∈ λ (x)∩λ (x′)
i j if a ∈Vx′ and υx′(a) = j

Injectivity of τx′ follows from the injectivity of τx|λ (x)∩λ (x′) and υx′ . To verify glueability, it suffices to
check that τx′ |λ (y)∩λ (x′) = τy|λ (y)∩λ (x′) for y ∈↓ x′. Since {τy}y∈↓x is a k-pebbling section family, for all
y ∈↓ x, τy|λ (y)∩λ (x) = τx|λ (y)∩λ (x). By construction, τx|λ (x)∩λ (x′) = τx′ |λ (x)∩λ (x′). By the claim, we have
that λ (y)∩λ (x′)⊆ λ (x)∩λ (x′). Therefore, τy|λ (y)∩λ (x′) = τx′ |λ (y)∩λ (x′).

Theorem 4. The following are equivalent:

1. A has a path decomposition of width < k

2. A has k-pebble linear forest cover

Proof. (1)⇒ (2) Suppose (X ,≤X ,λ ) is a path decomposition of A of width < k. We define a family of
linear ordered sets {(Si,≤i)}, where each Si is the vertex set of a connected component of G (A ). To
define the order≤i, we define an order on≤A and realize≤i as the restriction of≤A to Si. For every a ∈ A,
let xa ∈ X denote the ≤X -least element in X such that a ∈ λ (xa). Such an xa always exists by (PD1). By
lemma 3, there exists a k-pebbling section family{τx}x∈X . We then define ≤A:

a≤A a′⇔ xa <X xa′ or τx(a)≤ τx(a′) if xa = xa′ = x

The glueability condition on k-pebble section family {τx} allows us to obtain a well-defined pebbling
function p : A→ [k] from the τx. Explicitly, thinking of functions as their sets of ordered pairs, p=

⋃
x∈X τx.

The tuple ({(Si,≤i)}, p) is a k-pebble linear forest cover.
To verify that {(Si,≤i)} is a partition of A into linear ordered subsets, we observe that by construction

each Si is a connected component of A, and so {Si} partitions A. Suppose a,a′ ∈ Si, then by ≤X being a
linear order, either xa <X xa′ , xa >X xa′ , or xa = xa′ . If xa <X xa′ or xa >X xa′ , then a <i a′ or a >i a′ by
the definition of ≤i. If xa = xa′ = x, then either τx(a)≤ τx(a′) or τx(a)≥ τx(a′) by the linear ordering ≤
on [k]. Hence, in either case, a≤i a′ or a≥i a′, so ≤i is a linear ordering.

To verify (FC1), suppose a _ a′ ∈A . This means a,a′ are connected in G (A ), and so are in the
same connected component Si of G (A ).

To verify (FC2), suppose a _ a′ ∈ Si, a≤i a′, and b ∈ (a,a′]i. By definition of ≤i, xa ≤X xb ≤X xa′ .
Since a _ a′, by (PD2), there exists an x∈ X such that a,a′ ∈ λ (x). By the definition of xa′ as the≤X -least
element of X containing a′, we have xa′ ≤X x. By transitivity of ≤X and xa ≤X xa′ ≤X x, we have that
xa ≤X x. By (PD3), for every y ∈ [xa,x]X , λ (xa)∩λ (x)⊆ λ (y). In particular, for xb ∈ [xa,xa′ ]X ⊆ [xa,x]X ,
a ∈ λ (xb). Hence, a,b ∈ λ (xb) and by the injectivity of τxb , τxb(a) 6= τxb(b). Therefore, p(a) 6= p(b).

(2)⇒ (1) Suppose A has k-pebble linear forest cover given by the partition {(Si,≤i)}i∈[n] and
pebbling function p : A→ [k]. We define a linear ordered set (A,≤A) where ≤A is the ordered sum of
the family {(Si,≤i)}i∈[n]. Explicitly, a ≤A a′ iff a ∈ Si, a′ ∈ S j for i < j or a ≤i a′ for i = j. We say an
element a is an active predecessor of a′ if a≤A a′ and for all b ∈ (a,a′]A, p(b) 6= p(a). Let λ (a) to be the
set of active predecessors of a. The triple (A,≤A,λ ) is a path decomposition of A of width < k.
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To verify (PD1), observe that for every a ∈ A, a is an active predecessor of itself, since a≤A a and
(a,a]A =∅. Hence, a ∈ λ (a).

To verify (PD2), suppose a _ a′ ∈A . By (FC1), there exists an Si where a,a′ ∈ Si. Without loss of
generality, assume a≤i a′. By (FC2), for all b∈ (a,a′]i, p(b) 6= p(a). Therefore, a is an active predecessor
of a′, so a,a′ ∈ λ (a′).

To verify (PD3), suppose b ∈ [a,a′]A, and that c ∈ λ (a)∩λ (a′). By c ∈ λ (a) and b ∈ [a,a′]A, we have
that c ≤A a and a ≤A b, so c ≤A b. By c ∈ λ (a′), for all d ∈ (c,a′]A, p(c) 6= p(d). In particular, for all
d ∈ (c,b]A, p(c) 6= p(d). By definition, c is an active predecessor of b, so c ∈ λ (b).

To verify the width of the decomposition < k, we need to show that for every a′ ∈ A, |λ (a′)| ≤ k.
Assume for contradiction, |λ (a′)|> k for some a′ ∈ A. Consider the pebbling function restricted to λ (a′),
p|λ (a′) : λ (a′)→ [k]. By the pidegeonhole principle, there must exist a,c ∈ λ (a′) with a 6= c, such that
p(a) = p(c). Without loss of generality, assume a <A c. Since a ∈ λ (a′), a is an active predecessor of a′,
i.e. for all b ∈ (a,a′]A, p(b) 6= p(a). In particular, since c ∈ (a,a′]A, as a <A c and c ∈ λ (a′), p(c) 6= p(a).
Contradiction.

Theorem 5. There is a bijective correspondence between:

1. k-pebble forest covers of A

2. coalgebras α : A → PRkA

(1)⇒ (2) Suppose A has k-pebble linear forest cover given by the partition {(Si,≤i)}i∈[n] and
pebbling function p : A→ [k]. Since each (Si,≤i) is a linear ordered, we can present (S, ≤i) as a chain:

a1 ≤i · · · ≤i ami

Define

ti = [(p(a1),a1), . . . ,(p(am),ami)]

Intuitively, ti is the enumeration induced by the linear order ≤i of Si zipped with its image under p. For
every a j ∈ Si, let αi : Si → PRkA be defined as αi(a j) = (ti, j). Let α : A→ PRkA be α =

⋃
i∈[n] αi.

Since the collection of Si partition A, α is well-defined. We must show that the function α is a coalgebra
α : A → PRkA .

To verify that α is indeed a homomorphism, suppose R ∈ σ is an m-ary relation and RA (a1, . . . ,am).
By (FC1), {a1, . . . ,am} ⊆ Si for some i ∈ [n]. Therefore, for all j ∈ [m], α(a j) = (ti,z j) for some
z j ∈ {1, . . . , |ti|}. Let z be the maximal index amongst the z j. Assume α(a) = (t,z) for a ∈ {a1, . . . ,am}.
By (FC2), for every a j and b ∈ (a j,a]i, p(a j) 6= p(b). Therefore, πA(ti,z j) does not appear in ti(z j,z].
Hence, by the definition of RPRkA and the supposition that RA (a1, . . . ,am), RPRkA ((ti,z1), . . . ,(ti,zm)).

To verify that α satisfies the counit-coalgebra law, suppose a ∈A , then by {Si} partitioning A, a ∈ Si

for some i ∈ [n]. Assume a is the j-th element in the ≤i linear ordering:

εA ◦α(a) = εA ◦αi(a) by supposition a ∈ Si

= εA (ti, j) defn of αi

= a defn of ti and εA
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To verify that α satisfies the comultiplication-coalgebra law,

δA ◦α(a) = δA ◦αi(a) by supposition a ∈ Si

= δA (ti, j) defn of αi

= ([(p(a1),(ti,1)), . . . ,(p(ami),(ti,mi))], j) defn of ti and δA

= ([(p(a1),α(a1)), . . . ,(p(ami),α(ami))], j) defn of α

= PRkα(ti, j) defn of ti and functoriality of PRk

= PRkα ◦α(a) defn of α

(2)⇒ (1). We define a family of linear ordered subsets {(St ,≤t)} of A.

St := {a | α(a) = (t, j) for some j ∈ [|t|]}
a≤t a′⇔ α(a) = (t, j), α(a′) = (t, j′) and j ≤ j′

Let p : A→ [k] be p = πA ◦α . The tuple ({(St ,≤t)}, p) is a k-pebble linear forest cover of A .
To verify that {(St ,≤t)} is a partition of linear ordered subsets, suppose there exists an a ∈ St ∩St ′ ,

then we want to show that t = t ′. Since a ∈ St , then α(a) = (t, j) for some j ∈ [|t|]. Similarily, since
a ∈ St ′ , α(a) = (t ′, j′) for some j′ ∈ [|t ′|]. By α being a well-defined function, α(a) = (t, j) = (t ′, j′), so
t = t ′. Finally, by construction and {1, . . . , |t|}= [|t|] being linear ordered by ≤, the order ≤t is a linear
ordering.

To verify (FC1), suppose a _ a′ and that α(a) = (t, j) and α(a′) = (t ′, j′). By α being a homomor-
phism, α(a)_ α(a′), so (t, j)_ (t ′, j′). However, by the definition of RPRkA for all R ∈ σ , elements of
PRkA are only related if they are part of the same pebble play, so t = t ′. By definition, a,a′ ∈ St .

To verify (FC2), suppose a _ a′ with a ≤t a′ and b ∈ (a,a′]t . We want to show that p(b) 6= p(a).
Since a _ a′, there is some m-tuple~a ∈ RA for some m-ary relation R ∈ σ . By α being a homomorphism,
there exists (t, j),(t, j′) ∈ α(~a) ∈ RPRkA for some j ≤ j′ ∈ [|t|] such that α(a) = (t, j) and α(a′) = (t, j′).
Moreover, since b ∈ (a,a′]t there exists an i ∈ ( j, j′] such that α(b) = (t, i). By construction, p(b) =
πA ◦α(b) = πA(t, i). However, by the first condition in the definition of RPRkA , πA(t, j) does not appear
in t( j, j′], so p(b) = πA(t, i) 6= πA(t, j) = p(a).

Corollary 6. For all σ -structures A , pw(A ) = κPR(A )−1

Proof. By theorem 4 and 5, a structure A has a path decomposition of width < k iff A has a coalgebra
A → PRkA . Hence, pw(A )+1≤ κPR(A ) and κPR(A )≤ pw(A )+1, by the definition of pw(A ) as
the minimal width of a path decomposition for A and κPR as the minimal index for a PRk-coalgebra of
A .

We can extend theorem 5 to an equivalence of categories. Consider the category TPR
k (σ) of tree-

ordered σ -structures (A ,≤A, p) with A ∈ R(σ)0 and pebbling function p : A→ [k] satisfying the
conditions:

• (E) If a _ a′ ∈A , then either a≤A a′ and a′ ≤A a.

• (P) If a _ a′ and a≤A a′, then for all b ∈ (a,a′]A, p(b) 6= p(a).

• (L) For every a ∈ A, ↑ a is linearly-ordered by ≤A.
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The last condition (L) taken together with ≤A being a tree-order (i.e. for every a ∈ A, ↓ a is linear
ordered by ≤A) means (A,≤A) is a disjoint union of linear ordered sets. That is, (A,≤A) is a linear
forest. Morphisms in TPR

k (σ) are σ -morphisms that preserve the ordering relation and pebbling function.
There is an evident forgetful functor Uk : TPR

k (σ)→R(σ), i.e. (A ,≤A, p) 7→A . Consider the functor
Fk : R(σ)→ TPR

k (σ) with

• Object mapping A 7→ (PRkA ,≤∗,πA ) where (t, i)≤∗ (t ′, j) iff t = t ′ and i≤ j, and

• Morphism mapping f 7→ PRk f

This functor Fk is right adjoint to Uk. In fact, we show that this adjunction yields an equivalence between
TPR

k (σ) and E M (PRk).

Theorem 7. For each k > 0, Uk a Fk is a comonadic adjunction. Moreover, PRk is the comonad arising
from this adjunction.

6 Logical equivalences

Though the construction of PRk was motivated by capturing pathwidth as coalgebras, the other Spoiler-
Duplicator game comonads Ck explored in [1, 4, 6, 2] were constructed by capturing Duplicator’s winning
strategies as coKleisli morphisms of Ck. In this section, we prove a morphism power theorem for PRk,
showing that coKleisli morphisms PRkA →B correspond to Duplicator’s winning strategy in a one-
sided pebble-relation game. This game characterizes preservation of sentences in the existential positive
k-variable logic with restricted conjunctions ∃+Nk. First, we will prove this result, indirectly, by utilizing
Dalmau’s results linking his pebble-relation game to pathwidth [7].

We began by introducing Dalmau’s k-pebble relation game ∃PebRk(A ,B) from A to B charac-
terizing A V∃

+Nk B. Each round of the game ends with a pair (I,T ) where I ⊆ A is a domain such
that |I| ≤ k and T ⊆R(σ)1(A |I,B) is as set of σ -morphisms from A |I to B. At round 0, I = ∅ and
T = {λ} where λ is the unique function from ∅ to B. At each subsequent round n > 0, suppose (I,T ) is
the configuration of the previous round n−1, then Spoiler moves first with two possible moves:

• A shrinking move, where Spoiler chooses a smaller domain I′ ⊆ I

– Duplicator chooses T ′ to be restrictions of the morphisms in T to I′, i.e. T ′ = {h|I′ | h ∈ T}.
• A blowing move when |I|< k, where Spoiler chooses a larger domain I ⊆ I′ with |I′| ≤ k.

– Duplicator responds by choosing a set of σ -morphisms T ′ from A |I′ to B extending a subset
S of the morphisms in T .

At the end of the n-th round, the configuration is (I′,T ′). Duplicator wins the n-th round if T ′ is
non-empty. Spoiler wins otherwise. That is, Spoiler wins if Duplicator can not successfully extend
any of the morphisms in T to I′.

Intuitively, in the ∃PebRk game, Duplicator is given the advantage of non-determinism by being able to
respond with a set of partial homomorphisms where she is only obligated to extend some of the partial
homomorphisms chosen in the previous round. In fact, we can recover the ordinary one-sided k-pebble
game ∃Pebk by insisting that Duplicator always responds with a singleton set T . In order to show that
coKleisli morphisms PRkA →B capture Duplicator’s winning strategies in ∃PebRk(A ,B), we need to
introduce some notation.

Definition 5. For all comonads T : C→ C and objects A,B ∈ C, A maps to B up to T-coalgebras, denoted
A T−→ B, if for all coalgebras α : C→ TC, C→ A⇒C→ B
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Similarly, we say that A maps to B up to pathwidth < k, denoted A
pw<k−−−→B, if for all σ -structures

C such that pw(C )< k, C →A ⇒ C →B. A general fact about comonads is that the relation A T−→ B is
exactly existence of a coKleisli morphism from A to B.

Proposition 8. Let (T : C→ C,ε,δ ) be a comonad, then f : TA→ B⇔ A T−→ B

Proof. ⇒ Suppose h : C→ A ∈ C1, then given f : TA→ B and α : C→ TC, we can form the composition
f ◦Th◦α : C→ B.
⇐ Suppose that for all coalgebras, α : C→ TC, C→ A⇒C→ B. In particular, if we let C = TA

and let α = δA : TA→ TTA, i.e. the cofree coalgebra over A, then by εA : TA→ A, there exists an
f : TA→ B.

The seminal theorem of Dalmau’s paper [7] links pathwidth, pebble-relation games, and preservation
of sentences in the logic ∃+Nk. We will utilize this result, along with our coalgebra characterization
theorem, i.e. theorems 4,5, in order to obtain indirectly the morphism power theorem.

Theorem 9 (Theorem 1 of [7]). The following are equivalent for all σ -structures A ,B:

1. Duplicator has a winning strategy in ∃PebRk(A ,B).

2. A V∃
+Nk B

3. A
pw<k−−−→B

The comonad PRk allows us to add coKleisli morphisms to this equivalence, obtaining the morphism
power theorem for PRk:

Theorem 10. The following are equivalent for all σ -structures A ,B

1. There exists a coKleisli morphism f : PRkA →B

2. Duplicator has a winning strategy in ∃PebRk(A ,B)

Proof. We have the following chain of equivalences:

f : PRkA →B⇔A
PRk−−→B proposition 8, T= PRk

⇔A
pw<k−−−→B theorems 4, 5

⇔ Duplicator has a winning strategy ∃PebRk(A ,B) theorem 9

Though we are able to obtain this morphism power theorem for PRk indirectly, a direct proof would
provide hints towards proofs for the bisimulation and isomorphism power theorems for PRk. The
relationship between PRk and the game ∃PebRk is bit different than the other Spoiler-Duplicator game
comonads. This ensures that a direct proof will be different in character than the analogous proofs for Ek
and Pk. For the other Spoiler-Duplicator game comonads, the action of the comonad on a structure has a
nice intuitive description in terms of the corresponding game. Namely, elements of EkA could be seen as
Spoiler’s play in a one-sided k-round Ehrenfeucht-Fraïssé game ∃EFk from A to another structure. Set
functions from EkA →B could be seen as Duplicator’s responses in ∃EFk(A ,B). The interpretation
REkA of the relations R ∈ σ were chosen to force σ -morphisms EkA →B to correspond to winning
strategies for Duplicator in ∃EFk(A ,B). A similar story could be told for the pebbling comonad Pk and
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the other Spoiler-Duplicator game comonads appearing in [6, 2]. By contrast, it is not clear how elements
of PRkA correspond to Spoiler’s play in the ∃PebRk game from A . It is also not clear how functions
PRkA →B correspond to Duplicator’s responses in the game ∃PebRk(A ,B). However, we can view
elements of PRkA as Spoiler’s plays in a different, but equivalent, game: the one-sided all-in-one or
pre-announced k-pebble game ∃PPebk(A ,B) introduced in [16]. This game is played in one round. In
the first and only round,

• Spoiler chooses a list of pebble placements on elements of A , s = [(p1,a1), . . . ,(pn,an)]

• Duplicator responds with a compatible (same length and corresponding pebble at each index) list of
pebble placements on elements of B, t = [(p1,b1), . . . ,(pn,bn)]

Duplicator wins if for every index i ∈ [n], the relation γi = {(lastp(s[1, i]), lastp(t[1, i])) | p ∈ [k]} is a
partial homomorphism from A to B.

Just as with the proofs with the morphism power theorems for Ek and Pk, we must impose an additional
I-morphism condition on morphisms of the type PRkA →B. In the proof for Ek, this condition was
used to ensure that coKleisli morphisms g : EkA →B would map a sequence s = [a1, . . . ,an] with a
repetition, say ai = a j, to the same Duplicator response. That is, bi = g(si) = g(s j) = b j with si,s j

being the i-th subsequence and j-th subsequence of s (respectively). This ensured that Duplicator would
respond with elements of B that generated a well-defined partial homomorphism. We can reformulate
this use of I-morphism, by using the machinery of relative comonads. Namely, we expand the signature
σ+ = σ ∪{I} to include a new binary relation I, and we consider the functor J : R(σ)→R(σ+) where
a σ -structure A is mapped to the same σ -structures with IJA interpreted as the identity relation, i.e.
IJA = {(a,a) | a ∈ A }. Let PRσ+

k ,Pσ+

k denote the comonads PRk,Pk on the category R(σ+) of this
expanded signature σ+. It is easy to show that PR+

k = PRσ+

k ◦ J and P+
k = Pσ+

k ◦ J are relative comonads
over J.

We can now give, using this ∃PPebk(A ,B) game, a more direct proof of theorem 10.

Theorem 11. The following are equivalent for all σ -structures A ,B:

1. Duplicator has a winning strategy in ∃PPebk(A ,B)

2. There exists a coKleisli morphism f : PRkA →B

3. There exists a coKleisli morphism f+ : PR+
k A → JB

4. Duplicator has a winning strategy in ∃PebRk(A ,B)

Proof. (1)⇒ (2) We define the coextension σ -morphism f ∗ : PRkA → PRkB and note that f = εB ◦ f ∗.
Suppose Duplicator has a winning strategy in ∃PPebk(A ,B), then for every list of pebble placements
s = [(p1,a1), . . . ,(pn,an)] on A , Duplicator responds with a list of pebble placements with the same
length and corresponding pebble placed at each index, t = [(p1,b1), . . . ,(pn,bn)]. Define f ∗(s, i) = (t, i)
for every i ∈ [n].

To verify f ∗ is indeed a homomorphism, suppose RPRkA ((s, i1), . . . ,(s, im)) and let i=max{i1, . . . , im}.
By the active pebble condition, for all i j ∈ {i1, . . . , im}, the pebble appearing at i j does not appear in s(i j, i].
Hence, the element εA (s, i j) was the last element pebbled by the pebble πA(s, i j) in s[1, i], so εA (s, i j) is
in the domain of γi. By γi being a partial homomorphism, RB(bi1 , . . . ,bim), so RB(εB(t, i1), . . . ,εB(t, im)).
The active pebble condition follows by t being compatible with s, so RPRkB((t, i1), . . . ,(t, im)).

(2)⇒ (3) We say a sequence s = [(p1,a1), . . . ,(pn,an)] is duplicating if there exists a i < j ∈ [n]
such that pi 6= p j, πA(s, i) does not appear in s(i, j] (i.e. pi is active) with ai = a j. Let s′ denote the
longest subsequence of s such that s′ is non-duplicating and for every j ∈ [n], there exists a j′ ≤ j with
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εA (s′, j′) = εA (s, j). Such a s′ can be shown to always exist for every sequence of pebble placements
s. This can be shown inductively by removing moves (p j,a j) that are duplicating the placement of a
different active pebble pi 6= p j on the same element ai = a j. Define f+(s, j) = f (s′, j′).

(3)⇒ (4) Recall, there exists a natural transformation νJA : PR+
k → P+

k . The pre-image of k-pebble
plays in PkA under νJA gives us a way to formulate Duplicator’s response in ∃PebRk(A ,B). Namely,
consider the coextension f † : PR+

k A → PR+
k B obtained from f+PRkA → JB (which exists by (3)).

From f †, νJA , and νJB we can define a set of partial homomorphisms for every s ∈ PkA ∪{ε}:

Ts = { γs,t | (u, i) ∈ ν
−1
JA (s) and t = νJB( f †(u, i))}

where ν
−1
JA (s) is the fiber of s under νJA . Unpacking the definition of ν

−1
JA (s′), this set consists of pairs

(u′, i) such that s′ = u′[1, i] where i is the length of s′. Intuitively, each u′ is a full Spoiler play of the
one-sided k-pebble game which mirrors s′ for the first i moves. By induction on the number rounds n of
the game, we prove the following inductive hypothesis:

(IH1) There exists a pebble play s ∈ PkA∪{ε}, In and Tn such that In ⊆ Active(s) and Tn = Ts|In

(IH2) Duplicator has won the n-th round of the game, i.e. the configuration is (In,Tn) where Tn is a
non-empty set of partial homomorphism from domain In ⊆A to B and |In| ≤ k.

For the base case n = 0, by definition, Spoiler chooses I0 = ∅ and T0 = {λ} where λ is the unique
homomorphism of type ∅→B. We let s0 = ε . For the inductive step, round n′ = n+1, assume (I,T )
was the configuration and s was the pebble play of the previous round. If Spoiler chooses a shrinking
move I′ ⊆ I, then T ′ is just the restriction of functions f ∈ T to the smaller domain I′. We let s′ = s in this
case. By the construction of s and Duplicator’s default response to shrinking moves, (IH1) and (IH2) hold
for round n′. If Spoiler chooses a blowing move I′ ⊇ I, then |I′| ≤ k and |I|< k. By (IH1), I ⊆ Active(s).
Let P⊆ [k] be the set of pebbles not pebbling elements of I in Active(s). Let N = I′\I be the set of new
elements of I′. By cardinality considerations, there exists an injective function p : N→ P. Choose an
enumeration of N = {a1, . . . ,am} and let s′ = s[(p(a1),a1), . . . ,(p(am),am)].

For a ∈ I′, either a ∈ N or a ∈ I∩ I′. If a ∈ N, then a is pebbled by p(a) and since P contains pebbles
not in Active(s), a ∈ Active(s′). If a ∈ I∩ I′, then a ∈ Active(s) and therefore pebbled by a pebble not in
P, it follows that a ∈ Active(s′). Let Tn = Ts′ . Therefore, (IH1) holds for n′.

To verify (IH2), we need to show that Ts′ is non-empty set of partial homomorphisms. Let γs′,t ∈ Ts′ ,
then there exists a u′ such that (u′, i) ∈ PRkA where i is the length of s′ and t = f †(u′, i)[1, i]. Suppose
(a1, . . . ,ar) ∈ RA for r-ary relation symbol R ∈ σ and a1, . . . ,ar ∈ I′, Since u′ has s′ as prefix, a1, . . . ,ar

appear in u′ at some indices j1, . . . , jr ≤ i. Let bz = f †(u′, jz), then (az,bz) ∈ γs′,t for z = 1, . . . ,r. By f †

being homomorphism, it follows that RB(b1, . . . ,br). Hence, γs′,t is a partial homomorphism. The set Ts′

is non-empty as γs,t ∈ Ts′ for t = νJB( f †(s′, i))
(4)⇒ (1) This is theorem 14 of [16].

7 Conclusion

We have added to the growing list of Spoiler-Duplicator game comonads that unify particular model-
comparison games with combinatorial invariants of relational structures. This perspective has found
applications in reformulations of Rossman’s homomorphism preservation theorem [13] and promises to
provide new perspectives in finite model theory and descriptive complexity.

In particular, PRk provides a categorical definition for pathwidth and winning strategies in Dalmau’s
pebble relation game. This allowed us to obtain a syntax-free characterization of equivalence in a
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restricted conjunction fragment of k-variable logic. In addition to this new comonad, we also obtained
this comonad in novel way: by first trying to capture the combinatorial invariant, instead of internalizing
the corresponding game. Moroever, some of the proofs, in this paper use techniques distinct from those
used for other Spoiler-Duplicator comonads (e.g. k-pebbling section families, fibers over PkA to model
non-determinism).

There are a few avenues for future work:

• The pebble-relation comonad PRk can be seen as the “linear” or path variant of the “tree shaped”
pebbling comonad. In fact, as the notion of arboreal categories discussed in [3] shows, all of the
Spoiler-Duplicator game comonads discovered so far have been “tree shaped”. Is there a general
method for obtaining a “linear” variant of a “tree shaped” Spoiler-Duplicator game comonad?

• It was stated in [7] that constraint satisfaction problems (CSPs) with bounded pathwidth duality
are in NLOGSPACE. All known CSPs in NLOGSPACE have bounded pathwidth duality. Could
redefining bounded pathwidth duality in terms of PRk aid in a proof of this converse or construction
of a counterexample?

• In [8], CSPs in LOGSPACE were shown to have bounded symmetric pathwidth duality. Whereas,
bounded pathwidth duality can be seen as a local property of the obstruction set, bounded symmetric
pathwidth is a global property of the obstruction set. How do we formulate bounded symmetric
pathwidth in terms of PRk?
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