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Cartesian differential categories come equipped with a differential combinator that formalizes the di-
rectional derivative from multivariable calculus. Cartesian differential categories provide the categor-
ical semantics of the differential λ -calculus and have also found applications in causal computation,
incremental computation, game theory, differentiable programming, and machine learning. There
has recently been a desire to provide a (coordinate-free) characterization of Jacobians and gradients
in Cartesian differential categories. One’s first attempt might be to consider Cartesian differential
categories which are Cartesian closed, such as models of the differential λ -calculus, and then take
the curry of the derivative. Unfortunately, this approach excludes numerous important examples of
Cartesian differential categories such as the category of real smooth functions. In this paper, we
introduce linearly closed Cartesian differential categories, which are Cartesian differential categories
that have objects of linear maps, a bilinear evaluation map, and the ability of currying maps which are
linear in their second argument. As such, the Jacobian of a map is defined as the curry of its deriva-
tive. Many well-known examples of Cartesian differential categories are linearly closed, such as, in
particular, the category of real smooth functions. We also explain how a Cartesian closed differential
category is linearly closed if and only if a certain linear idempotent on the internal hom splits. To
define the gradient of a map, one requires the ability to take the transpose of the Jacobian, which can
be done in a Cartesian reverse differential category. Thus, we define the gradient of a map to be the
curry of its reverse derivative and show this equals the transpose of its Jacobian. We also explain
how a linearly closed Cartesian reverse differential category is precisely a linearly closed Cartesian
differential category with an appropriate notion of transpose.

1 Introduction

Cartesian differential categories, introduced by Blute, Cockett, and Seely in [5], come equipped with a
differential combinator D which provides a categorical axiomatization of the directional derivative from

multivariable calculus, and so for every map A
f−→ B produces its derivative A×A

D[ f ]−−→ B. There is no
shortage of examples of Cartesian differential categories in the literature, but arguably the most impor-
tant example is SMOOTH, the category of Euclidean spacesRn and real smooth functions between them,
where the differential combinator, in this case, is precisely the classical directional derivative. Another
important class of examples are the Cartesian closed differential categories [8, 9, 19], which provide
the categorical semantics of Ehrhard and Regnier’s differential λ -calculus [14]. Cartesian (closed) dif-
ferential categories have found numerous applications in computer science such as being picked up by
Katsumata and Sprunger in their work on causal computations [21], by Abadi and Plotkin in their work
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2 Jacobians and Gradients for CDCs

on differentiable programming languages [1], by Alvarez-Picallo and Ong in their work on incremental
computation [2], by Laird, Manzonetto, and McCusker on their work in game theory [17], and most
recently for their usage in machine learning with the introduction of Cartesian reverse differential cate-
gories [10, 12] which have been shown to be a suitable setting for reverse gradient descent by Cruttwell,
Gavranović, Ghani, Wilson, and Zanasi in [13, 23].

An important concept in differential calculus is the Jacobian matrix, where recall that for a smooth

function Rn F=〈 f1,..., fn〉−−−−−−−→ Rm, its Jacobian matrix at point ~x ∈ Rn is given by the n×m matrix J(F)(~x)
whose coordinates are the partial derivatives of fi evaluated at ~x. The Jacobian matrix at ~x’s associated
R-linear function is called the total derivative of F , and evaluating this linear function at~y results in the

derivative D[F ](~x,~y). Thus, the Jacobian of F can be interpreted as a map Rn J(F)−−→ LIN(Rn,Rm), where
the codomain is the vector spaces of R-linear functions from Rn to Rm, and can therefore be understood

as sort of curry Rn×Rn D[F ]−−→ Rm. Interpreting the Jacobian in this manner shows how the Jacobian is a

special case of both the Fréchet derivative and the Gateaux derivative. For a smooth function Rn f−→R, its
gradient at~x∈Rn is the transpose of its Jacobian at~x, ∇( f )(~x) = J(F)(~x)T ∈Rn. Since LIN(R,Rn)∼=Rn,

the gradient can therefore be interpreted as a map Rn ∇( f )−−→ LIN(R,Rn).
The notions of Jacobians and gradients have yet to be formally defined in a Cartesian differential cat-

egory. Such concepts would be highly desirable, specifically if one wishes to formalize machine learning
algorithms in Cartesian differential categories. This need for Jacobians and gradients is expressed by
Katsumata and Sprunger where they state following in the conclusion of their paper [21]: “Though we
would like to say our abstract treatment of differentiation can be used directly by machine learning prac-
titioners, it appears this is not the case yet. The derivative of a morphism in a Cartesian differential
category is not the same as having an explicit Jacobian or gradient. A gradient can be recovered from
this morphism by applying it to all the basis vectors, but when there are millions of parameters in a
machine learning model, this idea is computationally disastrous. We think that by adding some structure
to Cartesian differential categories, such as a designated closed subcategory, we could give a theoreti-
cal treatment allowing for more explicit representation of Jacobians.” This highlights a clear need for
axiomatizing (coordinate-free) Jacobians and gradients in the context of Cartesian differential categories.

Based on the above discussion, and as suggested by Katsumata and Sprunger, one’s first attempt
might be to consider defining Jacobians in a Cartesian closed differential category and define the Jaco-

bian of a map A
f−→ B as the curry of its derivative A×A

D[ f ]−−→ B, so A
λ (D[ f ])−−−−→ [A,B]. While this is a

very reasonable and promising idea where one can get quite far in extracting the main properties of the
Jacobian, there is a flaw. The Cartesian closed differential category approach would exclude numerous
examples of Cartesian differential categories, specifically those with a “finite-dimensional flavour” and
many machine learning related models. In particular, SMOOTH is not Cartesian closed since, intuitively,
the set of smooth functions from Rn to Rm is not a finite-dimensional R-vector space and therefore not
isomorphic to a Euclidean space Rk. Thus another approach is required. Luckily, note that the codomain
of the Jacobian is LIN(Rn,Rm), which is isomorphic to Rnm, and so can therefore be interpreted as an
object in SMOOTH. We may generalize this idea in numerous Cartesian differential categories since
there is a notion of linearity based on the differential combinator (and which often coincides with the
notion of linearity from linear algebra). Thus, one needs the notion of internal linear homs.

In this paper, we introduce the notion of a linearly closed Cartesian differential category, which is
a Cartesian differential category with internal linear hom L (A,B) (which can be interpreted as an object
which represents the set of linear maps from A to B), a bilinear evaluation map L (A,B)×A

ε`−→ B, and the
ability of currying maps which are linear in their second argument. Many analogues of the basic Cartesian
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closed properties hold for the linearly closed setting. One of the axioms of the differential combinator

states precisely that for any map A
f−→ B, its derivative A×A

D[ f ]−−→ B is linear in its second argument.

Therefore, the Jacobian of f is defined as the curry of D[ f ], A
J( f ):=λ`(D[ f ])−−−−−−−−→L (A,B), and numerous of

the basic properties of the Jacobian from classical calculus hold. Many important examples of Cartesian
differential categories are linearly closed, such as any differential Lawvere theory like SMOOTH or
the Lawvere theory of polynomials over a commutative semiring, and also the coKleisli category of a
differential category which is symmetric monoidal closed [4]. We also explain how a Cartesian closed
differential category is linearly closed if and only if a certain linear idempotent on the internal hom splits.
Therefore, a certain idempotent completion of a Cartesian closed differential category results in a linearly
closed Cartesian differential category. Lastly, to define the gradient of a map, one requires the ability
to take the transpose (or dagger) of linear maps. This can be achieved in a linearly closed Cartesian
reverse differential category, which we explain is precisely a linear closed Cartesian differential category

equipped with linear transpose maps L (A,B) τ−→L (B,A). Therefore, the gradient of a map A
f−→ B is

defined by taking the curry of its reverse derivative A×B
R[ f ]−−→ A, which is linear in its second argument,

A
∇( f ):=λ`(R[ f ])−−−−−−−−→L (B,A), which we show is equal to the transpose of its Jacobian, so ∇( f ) = τ ◦ J( f ).

In future works, the notions of Jacobians and gradient will be particularly useful when generalizing
and applying automatic differentiation and machine learning algorithms, such as back-propagation or
(reverse) gradient descent, in the setting of a Cartesian (reverse) differential category. In fact, internal
linear homs are a key concept in Vákár’s recent work on automatic differentiation [22].

2 Background: Cartesian Differential Categories and Linear Maps

In this background section, we review Cartesian (closed) differential categories and linear maps, as well
as providing examples and a term logic notation that will help with intuition. For a more in-depth
introduction to Cartesian differential categories, we refer the reader to [5, 11].

The underlying structure of a Cartesian differential category is that of a Cartesian left additive cate-
gory, which in particular allows one to have zero maps and sums of maps, while also allowing for maps
that do not preserve said sums or zeros. Maps that do preserve the additive structure are called additive
maps. It is important to note that we do not assume that our Cartesian left additive categories necessarily
have negatives, which allows for examples from computer science. For a category with (chosen) finite
products we denote the (chosen) binary product as ×, with projection maps A×B

π0−→ A and A×B π1−→ B
and pairing object 〈−,−〉, and the (chosen) terminal object as >.
Definition 2.1 A left additive category [5, Definition 1.1.1] is a category X such that each hom-set
X(A,B) is a commutative monoid with addition X(A,B)×X(A,B) +−→ X(A,B), ( f ,g) 7→ f +g, and zero
0 ∈ X(A,B), and such that pre-composition preserves the additive structure: ( f + g) ◦ a = f ◦ a+ g ◦ a

and 0◦a = 0. A map A
f−→ B is said to be additive [5, Definition 1.1.1] if post-composition by f preserves

the additive structure: f ◦ (a+b) = f ◦a+g◦b and f ◦0 = 0. A Cartesian left additive category 1 [5,
Definition 1.2.1] is a left additive category X which has finite products and such that all the projection
maps A×B

π0−→ A and A×B π1−→ B are additive.

Cartesian differential categories are Cartesian left additive categories that come equipped with a
differential combinator, whose axioms capture the basic properties of the directional derivative from

1We note that the definition of a Cartesian left additive category presented here is not precisely that given in [5, Definition
1.2.1], but it is indeed equivalent, as explained in [11]
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multivariable differential calculus. In the following definition, it is important to note that we follow the
convention used in more recent work on Cartesian differential categories which flips the convention used
in [5], so that the linear argument of the derivative is in the second argument rather than in the first.

Definition 2.2 A Cartesian differential category [5, Definition 2.1.1] is a Cartesian left additive cate-
goryX equipped with a differential combinator D, which is a family of operatorsX(A,B) D−→X(A×A,B),

where for a map A
f−→ B, the resulting map A×A

D[ f ]−−→ B is called the derivative of f , and such that:

[CD.1] D[ f +g] = D[ f ]+D[g] and D[0] = 0

[CD.2] D[ f ]◦〈a,b+ c〉=D[ f ]◦〈a,b〉+D[ f ]◦〈a,c〉
and D[ f ]◦ 〈a,0〉= 0

[CD.3] D[1A] = π1 and D[π j] = π j ◦π1

[CD.4] D[〈 f ,g〉] = 〈D[ f ],D[g]〉
[CD.5] D[g◦ f ] = D[g]◦ 〈 f ◦π0,D[ f ]〉
[CD.6] D [D[ f ]]◦ 〈〈a,b〉,〈0,c〉〉= D[ f ]◦ 〈a,c〉
[CD.7] D [D[ f ]]◦ 〈〈a,b〉,〈c,0〉〉= D [D[ f ]]◦ 〈〈a,c〉,〈b,0〉〉

To help with the intuition, it is useful to use the term logic of Cartesian differential categories as
introduced in [5, Section 4], which expresses the differential combinator as: D[ f ](a,b) := d f (x)

dx (a) · b.
[CD.1] says that the derivative of a sum is equal to the sum of the derivatives, d f (x)+g(x)

dx (a) ·b = d f (x)
dx (a) ·

b+ dg(x)
dx (a) ·b, and that the derivative of zero maps is zero, d0

dx (a) ·b = 0. [CD.2] says that derivatives are
additive in their second argument, so that d f (x)

dx (a) ·(b+c) = d f (x)
dx (a) ·b+ d f (x)

dx (a) ·c and d f (x)
dx (a) ·0 = 0.

[CD.3] tells us what the derivatives of identity maps and projections maps are, so that dx
dx(a) ·b = b and

dπi(x0,x1)
d(x0,x1)

(a0,a1) · (b0,b1) = bi. [CD.4] says the derivative of a pairing of maps is equal to the pairing

of the derivatives, d〈 f (x),g(x)〉
dx (a) · b =

〈
d f (x)
dx (a) ·b, dg(x)

dx (a) ·b
〉

. [CD.5] is the chain rule which tells

us what the derivative of a composition of functions is, so dg( f (x))
dx (a) · b = dg(y)

dy ( f (a)) ·
(
d f (x)
dx (a) ·b

)
.

The last two axioms [CD.6] and [CD.7] may look somewhat mysterious but essentially they capture
properties of partial differentiation. Indeed, in any Cartesian differential category, one can define partial
differentiation by inserting zeros in the total differential [5, Section 4.5], which in the term logic is written
respectively as: d f (x,b)

dx (a) · c := d f (x,y)
d〈x,y〉 (a,b) · (c,0) and d f (a,y)

dy (b) · c := d f (x,y)
d〈x,y〉 (a,b) · (0,c). Thus, [CD.6]

tells us what the partial derivative in the second argument of a derivative is, d d f (x)
dx (a)·z
dz (b) ·c = d f (x)

dx (a) ·c,

while [CD.7] captures the symmetry of the partial derivatives, d d f (x)
dx (y)·b
d(y) (a) · c =

d d f (y)
dy (x)·c
d(x) (a) · b. We

note that partial derivatives are also differential combinators for the simple slice categories [5, Corollary
4.5.2], and the total derivative is equal to the sum of the partial derivatives [5, Lemma 4.5.1], that is,
d f (x,y)
d〈x,y〉 (a,b) · (c,d) =

d f (x,b)
dx (a) ·c+ d f (a,y)

dy (b) ·d. More discussion on the differential combinator axioms
can be found in [5, Remark 2.1.3].

Here are now our main examples of Cartesian differential categories (see [11] for a list of more
examples of Cartesian differential categories):

Example 2.3 Let R be a commutative ring and let R-MOD be the category of R-modules and R-linear

maps between them. R-MOD is a Cartesian differential category where for an R-linear map M
f−→ N,

its derivative M×M
D[ f ]−−→ N is defined as D[ f ](x,y) = f (y). More generally, every category with finite

biproducts is a where D[ f ] = f ◦π1.

Example 2.4 Let R be the set of real numbers. Define SMOOTH as the category whose objects are
the Euclidean real vector spaces Rn and whose maps are the real smooth functions Rn F−→ Rm between
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them. SMOOTH is a Cartesian differential category where the differential combinator is defined as the
directional derivative of a smooth function. Recall that a smooth function Rn F−→ Rm is in fact a tuple

F = 〈 f1, . . . , fm〉 of smooth functionsRn fi−→R. Then using the convention that~x∈Rn are column vectors,

the derivative Rn×Rn D[F ]−−→ Rm is defined as multiplying the Jacobian matrix of F at the first argument
~x, which is an m×n matrix J(F)(~x), with the second argument~y, seen as an n×1 matrix:

D[F ](~x,~y) := J(F)(~x)~y =


∂ f1
∂x1

(~x) ∂ f1
∂x2

(~x) . . . ∂ f1
∂xn

(~x)
∂ f2
∂x1

(~x) ∂ f2
∂x2

(~x) . . . ∂ f2
∂xn

(~x)
...

...
...

...
∂ fm
∂x1

(~x) ∂ fm
∂x2

(~x) . . . ∂ fm
∂xn

(~x)




y1
y2
...

yn

=


n
∑

i=1

∂ f1
∂xi

(~x)yi

...
n
∑

i=1

∂ fm
∂xi

(~x)yi


When m = 1, for a smooth function Rn f−→ R, D[ f ](~x,~y) is precisely the directional derivative of f at
point~x and along the vector~y.

Example 2.5 An important source of examples of Cartesian differential categories are the coKleisli cat-
egories of differential categories [4]. Very briefly (and leaving out most of the details), a differential
category [4, Definition 2.4] is a symmetric monoidal category (with tensor product ⊗ and unit k) with
a comonad ! which comes equipped with a deriving transformation !A⊗A d−→ A satisfying certain co-
herences which capture the basic algebraic properties of differentiation [3, Definition 7]. Examples of
differential categories can be found in [3, Section 9]. By [5, Proposition 3.2.1], when a differential
category has finite products, the coKleisli category of ! is a Cartesian differential category where the
differential combinator is defined using the deriving transformation.

An important class of maps in a Cartesian differential category are the linear maps and maps which
are linear in certain arguments. Essentially, a map is linear in an argument if when differentiating with
respect to that argument (and keeping the other arguments constant), one gets back the starting map.

Definition 2.6 In a Cartesian differential category X with differential combinator D:

(i) A map A
f−→ B is linear [5, Definition 2.2.1] if D[ f ]◦ 〈a,b〉= f ◦b (i.e. d f (x)

dx (a) ·b = f (b));

(ii) A map A×B
f−→C is linear in its first argument if f is linear with respect to the partial derivative

in its first argument, that is, D[ f ]◦ 〈〈a,b〉,〈c,0〉〉= f ◦ 〈c,b〉 (i.e. d f (x,b)
dx (a) · c = f (c,b));

(iii) A map A×B
f−→C is linear in its second argument if f is linear with respect to the partial derivative

in its second argument, that is, D[ f ]◦ 〈〈a,b〉,〈0,d〉〉= f ◦ 〈a,d〉 (i.e. d f (a,y)
dy (b) ·d = f (a,d));

(iv) A map A×B
f−→C is bilinear if it is linear in its first argument and linear in its second argument, or

equivalently if D[ f ]◦〈〈a,b〉,〈c,d〉〉= f ◦〈a,d〉+ f ◦〈c,b〉 (i.e. d f (x,y)
d(x,y) (a,b) · (c,d) = f (a,d)+ f (c,b)).

Define the subcategory of linear maps Lin[X] to be the category whose objects are the same as X and
whose maps are linear in X, and let U : Lin[X]→ X be the obvious forgetful functor.

By [CD.6], for any map f , its derivative D[ f ] is linear in its second argument, while by [CD.3],
identity maps and projections are linear. In fact, by [5, Lemma 2.2.2], linear maps are also closed under
composition, addition, and pairings, which implies that Lin[X] is a Cartesian left additive category with
the same structure as X. Furthermore, every linear map is also additive (though the converse is not
always true), and as a result, the finite product structure of X becomes a finite biproduct structure in

Lin[X], where in particular, the injection maps are defined as A
ι0:=〈1A,0〉−−−−−−→ A×B and B

ι1:=〈0,1B〉−−−−−−→ A×B.
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Example 2.7 In R-MOD, every R-linear map is linear in the Cartesian differential sense, so we have that

Lin[R-MOD] = R-MOD. On the other hand, M×M′
f−→ N is linear in its first argument (resp. second

argument) if and only if f (x,y) = f (x,0) (resp. f (x,y) = f (0,y). Therefore, the only maps which are
bilinear in the Cartesian differential sense are the zero maps. The same story holds true for any category
with finite biproducts.

Example 2.8 In SMOOTH, a smooth function Rn F−→ Rm is linear in the Cartesian differential sense if
and only if it is R-linear in the classical sense, that is, F(s~x+ t~y) = sF(~x)+ tF(~y) for all s, t ∈ R and
~x,~y∈Rn. So Lin[SMOOTH] is the category ofR-linear maps between theR-vector spacesRn. Similarly,
a smooth function Rn×Rk G−→ Rm is linear in its first argument (resp. second argument) if and only if it
is R-linear in its first argument Rn (resp. second argument Rk), that is, G(s~x+ t~y,~z) = sG(~x,~z)+ tG(~y,~z)

(resp. G(~z,s~x+ t~y) = sG(~z,~x)+ tG(~z,~x)). Thus, Rn×Rk G−→ Rm is bilinear if and only if it is R-bilinear.
We conclude this section by reviewing Cartesian closed differential categories (also sometimes called

differential λ -categories [8,19]) which, as the name suggests, are Cartesian differential categories whose
underlying category is also Cartesian closed and such that the differential combinator is compatible with
the curry operator. For a Cartesian closed category, we denote the internal hom by [A,B], the evaluation

map by [A,B]×A ε−→ B, and for a map A×B
f−→C, its curry is denoted A

λ ( f )−−→ [B,C].
Definition 2.9 A Cartesian closed differential category [9, Section 4.6] is a Cartesian differential cate-
gory which is also a Cartesian closed category such that all evaluation maps [A,B]×A ε−→ B are linear
in their first argument (note that this implies that λ ( f +g) = λ ( f )+λ (g) and λ (0) = 0).

Here are now some examples of Cartesian closed differential categories.
Example 2.10 Every model of the differential λ -calculus [14] induces a Cartesian closed differential
category [9, Theorem 4.3], and conversely, every Cartesian closed differential category induces a model
of the differential λ -calculus [8, Theorem 4.12].
Example 2.11 R-MOD and SMOOTH are not Cartesian closed differential categories since neither are
Cartesian closed.
Example 2.12 A differential storage category [3, Definition 10] is a differential category with finite
products and Seely isomorphisms, that is, !(A×B) ∼= !A⊗ !B and !> ∼= k are isomorphisms. By [6,
Theorem 4.4.2], for a differential storage category whose base category is also symmetric monoidal
closed (with internal homs denoted by A ( B), the coKleisli category is a Cartesian closed differential
category where [A,B] = !A ( B. Examples can be found in [8, Section 5].
Example 2.13 The category of convenient vector spaces and smooth functions between them is a Carte-
sian closed differential category [20, Example 2.4.2]. For a detailed introduction to convenient vector
spaces, see [16]. Briefly, a convenient vector space is a locally convex vector space E such that for every
smooth functionR c−→E, called a smooth curve, there exists another smooth curveR c−→E such that c′= c.
If E and F are convenient vector spaces, then a smooth function is a function E

f−→ F which preserves
smooth curves, that is, if c is a smooth curve of E, then f ◦ c is a smooth curve of F . Let CON be the
category of convenient vector spaces and smooth functions between them. CON is a Cartesian closed

differential category where the internal hom is given by [E,F ] = {E f−→ F | f is smooth}, which is indeed

a convenient vector space, and for a smooth function E
f−→ F , its derivative E×E

D[ f ]−−→ F is defined as
D[ f ](x,y) := lim

t→0

f (x+ty)− f (x)
t , where t ∈R. Note that while SMOOTH is not Cartesian closed, SMOOTH

is a sub-Cartesian differential category of CON. Furthermore, CON is also the coKleisli category of a
differential storage category [7].
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3 Linearly Closed Cartesian Differential Categories and Jacobians

In this section, we introduce the main contribution of this paper: linearly closed Cartesian differential
categories, which are the appropriate setting for defining Jacobians (in the Fréchet/Gateaux derivative
sense) in the context of Cartesian differential categories.

Definition 3.1 A linearly closed Cartesian differential category is a Cartesian differential category such
that for each pair of objects A and B, there is an object L (A,B), called the internal linear hom, and a

bilinear map L (A,B)×A
ε`−→ B called the evaluation map, such that for every map A×B

f−→C which is

linear in its second argument, there exists a unique map A
λ`( f )−−−→L (B,C), called the linear curry of f ,

such that f = A×B
λ`( f )×1B−−−−−→L (B,C)×B

ε`−→C.

It is worth highlighting the major differences between being linearly closed and Cartesian closed.
(1) L (A,B) should be interpreted as the internal version of Lin[X](A,B), so the linear maps from A to
B, while [A,B] is the internal version of X(A,B). (2) The evaluation map L (A,B)×A

ε`−→ B is bilinear,
while [A,B]×A ε−→ B is only linear in its first argument. The difference here is due to the fact that linear
maps are additive, while an arbitrary map may not be. (3) In a linearly closed setting, we are only able
to curry linear arguments. (4) It is possible to be linearly closed and not Cartesian closed, and vice-
versa. We stress that being linearly closed does not imply that Lin[X] is Cartesian closed. However, if
a Cartesian differential category X has a monoidal representation in the sense of [6, Section 3.2], then
we conjecture that being linearly closed is equivalent to Lin[X] being monoidal closed (this approach
has been studied by Gallagher and MacAdam [15], and we note that both SMOOTH and CON have
monoidal representation).

Now recall that [CD.6] says that for any map f , D[ f ] is linear in its second argument. Therefore, the
Jacobian of f is defined as the linear curry of its derivative:

Definition 3.2 In a linearly closed Cartesian differential category, the Jacobian of a map A
f−→ B is the

map A
J( f )−−→L (A,B) defined as the linear curry of A×A

D[ f ]−−→ B, that is, J( f ) := λ`(D[ f ]).

Here are now some examples of linearly closed Cartesian differential categories and Jacobians:

Example 3.3 R-MOD is not a linearly closed Cartesian differential category since the only bilinear maps
are zero maps. The same is true for any category with finite biproducts.

Example 3.4 SMOOTH is a linearly closed Cartesian differential category where the internal linear hom
is L (Rn,Rm) =Rnm and the evaluation map Rnm×Rn ε`−→ Rm is defined as laying out the first argument,
which is a column vector of size nm, into a matrix of size m× n and then multiplying by the second
argument, seen as a matrix of size n×1:

ε` (~x,~y) :=


x1 x2 . . . xn

xn+1 xn+2 . . . x2n
...

...
...

...
x(m−1)n+1 x(m−1)n+2 . . . xmn




y1
y2
...

yn

=


n
∑

i=1
xiyi

...
n
∑

i=1
x(m−1)n+iyi


When m = 1, the evaluation map is given by the dot product of vectors ε`(~x,~y) = ~x ·~y =

n
∑

i=1
xiyi. To

define the linear curry, let ei ∈ Rn be the canonical basis vectors, ei = [0, . . . ,0,1,0, . . . ,0]T. Then for a
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smooth function Rn×Rk G=〈g1,...,gm〉−−−−−−−→Rm, which is linear in its second argument, define Rn λ (G)−−−→Rkm as

λ (G)(~x) = [g1(~x,e1), . . . ,g1(~x,ek),g2(~x,e1), . . . ,gm(~x,ek)]
T. For a smooth function Rn F=〈 f1,..., fm〉−−−−−−−→ Rm,

taking J(F)(~x) = λ`(D[F ])(~x) results precisely in the Jacobain matrix of F at ~x interpreted as column
vector of size nm, J(F)(~x) = [ ∂ f1

∂x1
(~x), . . . , ∂ f1

∂xn
(~x), ∂ f2

∂x1
(~x), . . . , ∂ fm

∂xn
(~x)]T, which when post-composed in the

evaluation map results in laying it out back into a m×n matrix.

Example 3.5 For a differential category with finite products, if the base the category is symmetric
monoidal closed, then the coKleisli category will be a linearly closed differential category where the in-

ternal linear hom is given by L (A,B) :=A(B. For a coKleisli map !A
f−→B, its Jacobian !A

J( f )−−→A(B

is define as curry in the base symmetric monoidal category of the composite !A⊗A d−→ !A
f−→ B. Note that

unlike in the Cartesian closed case, we do not need to assume the presence of Seely isomorphisms for the
linearly closed case. That said, it can be shown that the coKleisli category of a differential storage cate-
gory is linearly closed if and only if the base category is symmetric monoidal closed. Furthermore, this
internal linear hom captures the notion of linear types in Vákár’s work on automatic differentiation [22].

Example 3.6 CON is a linearly closed Cartesian differential category where the internal linear hom is

L (E,F) = {E f−→ F | f is smooth and R-linear} ⊂ [E,F ], and the evaluation map L (E,F)×E
ε`−→ F

is defined in the obvious way, ε`( f ,x) = f (x). A smooth function E ×E ′
g−→ F is linear in its second

argument if and only if g is R-linear in its second argument. So if g is linear in its second argument,

then E
λ`(g)−−−→ L (E ′,F) is defined as λ`(g)(x)(y) = g(x,y). For a smooth functor E

f−→ F , its Jacobian

E
J( f )−−→L (E,F) is defined as J( f )(x)(y) = D[ f ](x,y).

Being linearly closed shares many analogous properties to being Cartesian closed. In term logic
notation, we write λ`( f )(a) = λ`y. f (a,y) and ε`(g,a) = g(a), and (λ`y. f (a,y))(b) = f (a,b), and so
J( f )(a) = λ`y.

d f (x)
dx (a) · y.

Proposition 3.7 Let X be a linearly closed Cartesian differential category.

1. λ`( f +g) = λ`( f )+λ`(g) and λ`(0) = 0

2. D[λ`( f )] = λ` (D[ f ]◦ 〈〈π0 ◦π0,0〉,〈π1 ◦π0,π1〉〉) (i.e. dλ`y. f (x,y)
dx (a) ·b = λ`y.

d f (x,y)
dx (a) · c).

3. There is a functor LIN[X]op × LIN[X] L−→ LIN[X] which maps a pair of object to the internal

linear hom L (A,B), and sends a pair of linear maps A
f−→ B and X

g−→ Y to the linear map

L (B,X)
L ( f ,g)−−−−→L (A,Y ) defined as the linear curry of L (B,X)×A

1× f−−→L (B,X)×B
ε`−→ X

g−→Y

4. There are natural isomorphisms: (i) L (A,B×C)∼=L (A,B)×L (A,C), (ii) L (A,C)×L (B,C)∼=
L (A×B,C), (iii) L (A,>)∼=>∼= L (>,A), and (iv) L (A,L (B,C))∼= L (B,L (A,C)).

PROOF: (Sketch) The computations for (1) and (2) are essentially the same as those in [9, Lemma 4.10].
The proof that L is a functor, L (A,>)∼=>, L (A,B×C)∼=L (A,B)×L (A,C), and L (A,L (B,C))∼=
L (B,L (A,C)), are essentially the same as in the Cartesian closed case. On the other hand, > ∼=
L (>,A) and L (A,C)×L (B,C) ∼= L (A×B,C) intuitively follow from the fact that > is an initial
object and × is a coproduct in LIN[X]. In other words, the only linear map of type >→ A is 0, while a
linear map of type A×B→C is actually a pair of linear maps A→ B and B→C. 2

We conjecture that being linearly closed induces a non-unital closed category structure on LIN[X].
The non-unital part comes from the fact that there may not be an object R such that A∼= L (R,A) for all
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objects A. While both SMOOTH and CON have such an object, namely R =R, if we take SMOOTHeven

the subcategory of Euclidean spaces of even dimension, then SMOOTHeven is still a linearly closed
Cartesian differential category, but does not have a unit. In future work, it will definitively be of interest
of studying linearly closed Cartesian differential closed with both a unit and monoidal representation.
Furthermore, note that in the Cartesian closed setting we have that [A, [B,C]]∼= [A×B,C], however in the
linearly closed setting, L (A,L (B,C)) represents the bilinear maps A×B→C, which is different from
L (A×B,C), which represents the linear maps A×B→C, and so L (A,L (B,C))�L (A×B,C).

Next we turn our attention to properties of the Jacobian. In particular, we provide analogues of
three basic classical identities: (1) J(F +G)(~x) = J(F)(~x)+J(G)(~x), (2) if F is R-linear with associated
matrix A (i.e. F(~x) = A~x) then J(F)(~x) = A, and (3) J(G◦F)(~x) = J(G)(F(~x))J(F)(~x). The first identity

is easy to generalize, while the latter two requires defining some extra maps. For a linear map A
f−→ B,

let >
p f−→ L (A,B) be the linear curry of the composite >× A π1−→ A

f−→ B, so in term logic notation
p f = λ`x. f (x). Next, define the map L (B,C)×L (A,B) �−→L (A,C) as the linear curry of the composite

L (B,C)×L (A,B)×A
1L (B,C)×ε`−−−−−−→L (B,C)×B

ε`−→C, and note that � captures composition of linear
maps, which we write in term logic notation as g� f = λ`x.g( f (x)). We leave it to the reader to check
for themselves that in SMOOTH, if Rn F−→ Rm is an R-linear map with associated n×m matrix A, then
pF is precisely A is column vector form, while recall that composition of R-linear maps corresponds to
matrix multiplication, and so � plays the role of matrix multiplication.

Proposition 3.8 In a linearly closed Cartesian differential category:

(i) J( f +g) = J( f )+J(g) and J(0) = 0 (i.e J( f +g)(a) = J( f )(a)+J(g)(a) and J(0)(a) = 0).

(ii) If A
f−→ B is linear, then J( f ) = p f ◦0 (i.e. J( f )(a) = λ`x. f (x)).

(iii) J(g◦ f ) =�◦〈J(g)◦ f ,J( f )〉 (i.e. J(g◦ f )(a) = J(g)( f (a))�J( f )(a))

PROOF: (Sketch). The first identity follows immediately from [CD.1] and Prop.3.7.(1). For the second
identity, if f is linear then we using the term logic we compute: J( f )(a) = λ`y.

d f (x)
dx (a) · y = λ`y. f (y).

Lastly for the third identity, we use the chain rule [CD.5] to compute: J(g◦ f )(a) = λ`y.
dg( f (x))

dx (a) · y =
λ`y.

dg(z)
dz ( f (a)) ·

(
d f (x)
dx (a) · y

)
= λ`y.J(g)( f (a))(J( f )(a)(y)) = J(g)( f (a))�J( f )(a). 2

We conjecture that it is most likely possible to provide an equivalent alternative axiomatization of
a linearly closed Cartesian differential category instead as a Cartesian left additive category equipped
with L (−,−), ε`, and J, where one would define the differential combinator as D[−] = ε` ◦ (J(−)×1).
While this is definitely of interest, it does require a bit of work to properly setup everything. As such,
this will be a story for another time.

We finish this section by providing necessary and sufficient conditions for when a Cartesian closed
differential category is also linearly closed, and then explain how every Cartesian closed differential
category embeds into a linearly closed Cartesian differential via splitting linear idempotents. We start
with the definition of linear idempotents splitting linearly (which is a special case of [9, Section 4.5]):

Definition 3.9 In a Cartesian differential category, a linear split idempotent is an idempotent A e−→ A
which is linear and such that there are linear maps A r−→ B and B s−→ A such that s◦ r = e and r ◦ s = 1B.
A linear idempotent complete Cartesian differential category is a Cartesian differential category such
that all linear idempotents are linear split idempotents.



10 Jacobians and Gradients for CDCs

The key idea is that we will define a linear idempotent on the internal hom [A,B] which linearly splits
via the internal linear hom L (A,B). To define this idempotent, we will require the notion of partial

linearization [11, Proposition 5.5]. So for a map A×B
f−→ C, define its linearization in context A, as

the map A×B
LA[ f ]−−−→C which is defined as D[ f ] ◦ 〈〈π0,0〉,〈0,π1〉〉, i.e. LA[ f ](a,b) = d f (a,y)

dy (0) · b. The
map LA[ f ] is now linear in its second argument. So in a Cartesian closed differential category, define

[A,B] `−→ [A,B] as the linear curry of the partial linearization of the evaluation map [A,B]×A
L[A,B][ε]−−−−→ B,

that is, ` = λ`

(
L[A,B] [ε]

)
. In term logic notation, we have that `( f ) = λ`y.

d f (x)
dx (0) · y, and so ` is under-

stood as mapping an arbitrary map f to its linearization [11, Proposition 3.6]. As such, it follows that `
is an linear idempotent.

Proposition 3.10 A Cartesian closed differential category is linearly closed if and only if [A,B] `−→ [A,B]
is a linear split idempotent.

PROOF: (Sketch) Suppose that our Cartesian closed differential category is also linearly closed. As
explained above, ` is already idempotent and linear. So it remains to construct a linear splitting of `.

First consider the curry of the evaluation map for the linear closed structure, L (A,B)
λ (ε`)−−−→ [A,B] which

is linear since ε` was linear in its first argument. Next, consider the linear curry of the partial linearization

of the evaluation map for the Cartesian closed structure, [A,B]
λ`(L[A,B][ε])−−−−−−−→L (A,B) which is also linear

since L[A,B][ε] is linear in its first argument. Then it follows that λ`

(
L[A,B][ε]

)
◦ λ (ε`) = 1L (A,B) and

λ (ε`) ◦ λ`

(
L[A,B][ε]

)
= `. So ` is a linear split idempotent. Conversely, suppose that [A,B] `−→ [A,B]

is a linear split idempotent via [A,B] r−→ L (A,B) and L (A,B) s−→ [A,B]. Then the internal linear hom
is given by the object of the splitting L (A,B), while the evaluation map is defined as the composite

ε` := L (A,B)×A s×1A−−−→ [A,B]×A
L[A,B][ε]−−−−→ B, which is bilinear since L[A,B][ε] is bilinear and s is linear.

The linear curry of a map A×B
f−→C which is linear in its second argument is defined as the composite

λ`( f ) := A
λ ( f )−−→ [A,B] r−→L (A,B). So our Cartesian closed differential category is linearly closed. 2

In a Cartesian closed differential category which is also linearly closed, for a map A×B
f−→C which

is linear in its second argument, its curry A
λ ( f )−−→ [B,C] factors through its linear curry A

λ`( f )−−−→L (B,C)

in the sense that λ ( f ) = A
λ`( f )−−−→ L (B,C)

s−→ [A,B]. It is also worth pointing out that while it is true

that [A,B]×A
L[A,B][ε]−−−−→ B is bilinear and if A×B

f−→C is linear in its second argument, then we also have
that f = L[B,C] [ε] ◦ (λ ( f )× 1B), this does not give a linearly closed structure since λ ( f ) may fail the
uniqueness requirement (i.e. L[A,B] [ε] is not monic in its first argument). For example, we have that
L[A,B] [ε] = L[A,B] [ε]◦ (`×1A) but ` 6= 1[A,B].

Given any Cartesian differential category, we may build its linear idempotent completion in the ob-
vious way. For a Cartesian differential category X, let LS[X] be the category whose objects are pairs

(A,A e−→ A) consisting of an object A and a linear idempotent e, and whose maps (A,e)
f−→ (B,e′) are

maps A
f−→ B such that f ◦ e = e′ ◦ f . By [11, Proposition 4.7, Corollary 4.1], LS[X] is a Cartesian differ-

ential category where the differential combinator is defined as in X, and LS[X] is also linear idempotent
complete. Furthermore, if X was a Cartesian closed differential category, then LS[X] is also a Cartesian
closed differential category. Therefore, putting all of this together, we obtain the following:
Proposition 3.11 If X is a Cartesian closed differential category, then LS[X] is a linearly closed Carte-
sian closed differential category.
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4 Cartesian Reverse Differential Categories and Gradients

In most of the standard conventions of calculus, the gradient of a scalar-valued smooth function is the
transpose of its Jacobian. In this section, we explain how Cartesian reverse differential categories are
the appropriate setting in which to define gradients and transposes. We briefly review Cartesian reverse
differential categories and invite readers to see the full story in the original paper [10].

Definition 4.1 A Cartesian reverse differential category is a Cartesian left additive categoryX equipped
with a reverse differential combinator R, which is a family of operators X(A,B) R−→ X(A×B,A), where

for a map A
f−→ B, the resulting map A×B

R[ f ]−−→ A is called the reverse derivative of f , and such that the
seven axioms found in [10, Definition 13] hold.

Example 4.2 SMOOTH is a Cartesian reverse differential category where for a smooth functionRn F−→ Rm,

F = 〈 f1, . . . , fm〉, its reverse derivativeRn×Rm R[F ]−−→Rn is defined by multiplying the transpose of the Ja-
cobian matrix of F at the first argument~x, which is an n×m matrix J(F)(~x)T, with the second argument
~y, viewed as an m×1 matrix:

R[F ](~x,~y) := J(F)(~x)T~y =


∂ f1
∂x1

(~x) ∂ f2
∂x1

(~x) . . . ∂ fm
∂x1

(~x)
∂ f1
∂x2

(~x) ∂ f2
∂x2

(~x) . . . ∂ fm
∂x2

(~x)
...

...
...

...
∂ f1
∂xn

(~x) ∂ f2
∂xn

(~x) . . . ∂ fm
∂xn

(~x)




y1
y2
...

ym

=


m
∑
j=1

∂ f j
∂x1

(~x)y j

...
m
∑
j=1

∂ f j
∂xn

(~x)y j


When m = 1, for a smooth function Rn f−→ R, recall that its gradient at ~x ∈ Rn is defined as ∇( f )(~x) =

J(F)(~x)T = [ ∂ f
∂x1

(~x), . . . , ∂ f1
∂xn

(~x)]T. So its reverse derivative Rn×R R[ f ]−−→ Rn is given by multiplying its
gradient at~x with the scalar in the second argument, R[ f ](~x,y) = ∇( f )(~x)y.

Every Cartesian reverse differential category is also a Cartesian differential category [10, Theorem
16], where the differential combinator D is induced by the reverse differential combinator R. Explicitly,

for a map A
f−→ B, note that its second order reverse derivative is of type (A×B)×A

R[R[ f ]]−−−−→ A×B. Then

the derivative of f is defined as the composite D[ f ] := A×A
〈1A,0〉×1A−−−−−→ (A×B)×A

R[R[ f ]]−−−−→ A×B π1−→ B.
Conversely, every Cartesian differential category with a contextual linear dagger [10, Definition 39]
is a Cartesian reverse differential category [10, Theorem 41]. Very briefly, a contextual linear dagger

amounts to an operator (−)†[−] which sends every map A×B
f−→C which is linear in its second argument

to a map A×C
f †[A]

−−→ B which is again linear in its second argument, and such that (−)†[A] makes the
category of maps which are linear in context A into a †-category with finite †-biproducts. Then the

reverse derivative of a map A
f−→ B is defined the taking the dagger in context of its derivative, that is,

R[ f ] := A×B
D[ f ]†[A]−−−−→ B. Furthermore, these constructions are inverses of each other [10, Theorem 42].

In a Cartesian reverse differential category, for any map f , its reverse derivative R[ f ] is linear in its
second argument. Therefore we define the gradient of f as the linear curry of its reverse derivative:

Definition 4.3 A linearly closed Cartesian reverse differential category is a Cartesian reverse differ-
ential category whose induced Cartesian differential structure is linearly closed. In a linearly closed

Cartesian reverse differential category, the gradient of a map A
f−→ B is the map A

∇( f )−−→L (B,A) defined

as the linear curry of A×B
R[ f ]−−→ A, that is, ∇( f ) := λ`(R[ f ]).
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Let us explain why this is the correct definition of the gradient by proving that it is the transpose of
the Jacobian. To do so, we first need the notion of a transpose operator:

Definition 4.4 A linearly closed Cartesian differential category has a linear transpose if for every pair
of objects A and B, there is a linear map L (A,B) τ−→L (B,A) such that (i) τ ◦ τ = 1, (ii) τ ◦ p1A = p1A

and τ ◦ pπ j = τ ◦ pι j , and (iii) τ ◦�=�◦〈τ ◦π1,τ ◦π0〉.

As we will see below, it turns out that in the linearly closed setting, having a linear transpose is
equivalent to having a contextual linear dagger (and so also having a reverse differential combinator).
Therefore, the linear transpose axioms are analogues of the fact that in a Cartesian reverse differential
category, Lin[X] is a †-category with †-biproducts [10, Proposition 24], and so τ( f ) = f †. Explicitly,
(i) captures the fact † is an involution f ††

= f , (ii) captures the fact that † maps identities to identities,
1† = 1, and projections to injections, π

†
j = ι j, while (iii) tells us that † is contravariant, (g◦ f )† = f † ◦g†.

In SMOOTH, ifRn F−→ Rm is anR-linear map with associated n×m matrix A, then F† is theR-linear map
given by the transpose matrix AT, and so τ does indeed plays the role of the matrix transpose operation.

Proposition 4.5 A linearly closed Cartesian reverse differential category is precisely a linearly closed
Cartesian differential category equipped with a linear transpose. Furthermore:

(i) f †[A] = ε
†[L (A,B)]
` ◦ (λ`( f )×1)

(ii) λ`( f †[A]) = τ ◦λ`( f )

(iii) ∇( f ) = τ ◦J( f )

(iv) ∇( f +g) = ∇( f )+∇(g) and ∇(0) = 0

(v) If f is linear then ∇( f ) = p f † ◦0

(vi) ∇(g◦ f ) =�◦〈∇( f ),∇(g)◦ f 〉

PROOF: (Sketch) Starting with a linearly closed Cartesian reverse differential category, first consider the

contextual linear dagger of the evaluation map L (A,B)×B
ε

†[L (A,B)]
`−−−−−→ A, and define the transpose map as

its linear curry L (A,B)
τ=λ`

(
ε

†[L (A,B)]
`

)
−−−−−−−−−→L (B,A) as its linear curry. Then τ is a linear transpose since, as

explained above, the linear transpose axioms will follow from the fact that Lin[X] is a †-category with
†-biproducts. Conversely, starting with a linearly closed Cartesian differential category with a linear

transpose τ , it suffices to construct a contextual linear dagger. For a map A×B
f−→C which is linear in its

second argument, we define its dagger as f †[A] := A×C
λ ( f )×1C−−−−−→L (B,C)×C

τ×1C−−−→L (C,B)×C
ε`−→ B.

So we obtain a linearly closed Cartesian reverse differential category. Next, (i) follows from the fact that
the contextual linear dagger preserves modification to the context, and so: f †[A] = (ε` ◦ (λ`( f )×1))†[A] =

ε
†[L (A,B)]
` ◦ (λ`( f )×1). Then (ii) is simply the linear curry of (i). For (iii), using (ii) and R[ f ] =D[ f ]†[A],

we compute that ∇( f )= λ`(R[ f ]) = λ`(D[ f ]†[A])= τ ◦λ`(D[ f ]) = τ ◦J( f ). The remaining three identities
are simply the transpose versions of the three identities from Proposition 3.8 and the linear transpose

axioms (and that if A
f−→ B is linear then τ ◦ p f = p f † which is a special case of (ii)). 2

We conjecture that an equivalent alternative axiomatization of a linearly closed Cartesian reverse
differential category can be given in terms of a Cartesian left additive category equipped with L (−,−),
ε`, ∇, and τ , where one would define the reverse differential combinator as R[−] = ε` ◦ (∇(−)× 1).
In other future work, it should also be possible to generalize other important notions from classical
differential calculus such as the divergence, the curl, the Laplacian, and the Hessian. In fact, recall that
the Hessian matrix is defined as the Jacobian matrix of the gradient. Therefore, the Hessian can be

defined in a linearly closed Cartesian reverse differential category as A
H( f ):=J(∇( f ))−−−−−−−−→L (A,L (B,A)).
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