
Graphical Language with Delayed Trace:
Picturing Quantum Computing with Finite Memory

– Extended Abstract –
Full version accepted at LICS2021, available on arXiv https://arxiv.org/abs/2102.03133

Titouan Carette, Marc de Visme, Simon Perdrix
Université de Lorraine, CNRS, Inria, LORIA F 54000 Nancy, France

Abstract—Graphical languages, like quantum circuits or ZX-
calculus, have been successfully designed to represent (memory-
less) quantum computations acting on a finite number of qubits.
Meanwhile, delayed traces have been used as a graphical way to
represent finite-memory computations on streams, in a classical
setting (cartesian data types). We merge those two approaches
and describe a general construction that extends any graphical
language, equipped with a notion of discarding, to a graphical
language of finite memory computations. In order to handle
cases like the ZX-calculus, which is complete for post-selected
quantum mechanics, we extend the delayed trace formalism
beyond the causal case, refining the notion of causality for
stream transformers. We design a stream semantics based on
stateful morphism sequences and, under some assumptions, show
universality and completeness results. Finally, we investigate the
links of our framework with previous works on cartesian data
types, signal flow graphs, and quantum channels with memories.

I. INTRODUCTION

Motivations. Several graphical languages have been success-
fully developed for representing finite dimension quantum
processes. The quantum circuits and the ZX-calculus are
the main examples of such graphical languages. The ZX-
calculus is equipped with a complete equational theory [1],
[2], that allows, among other applications, to perform circuit
optimization [3], [4], and to design fault tolerant computations
[5], [6]. These graphical languages have been designed for
finite-dimension quantum mechanics: each wire represents a
finite system – generally a qubit – as a consequence, a finite
diagram can only represent a finite dimension quantum evolu-
tion. Notice that using the scalable construction [7], one can
represent finite registers, with the possibility to split and merge
registers. This construction makes the representation more
compact but it remains a representation of finite dimension
quantum computations. There is a fundamental reason for
this restriction: finite dimension Hilbert spaces, contrary to
infinite dimension ones, form a compact closed category, and
the compact closure is the cornerstone of graphical languages
like the ZX-calculus.

To go beyond finite registers, we explore in this paper the
design of graphical languages for quantum stream transforma-
tions, i.e., computations taking (infinite) sequences of quantum
inputs to (infinite) sequences of quantum outputs. Intuitively a
transformation acting on a stream of qubits, inputs a qubit

|0〉

...

|0〉

Fig. 1: Left: A cascade of CNots on a stream of qubits.
At the first tick, a CNot is applied: the control qubit is in
the |0〉 state, the target qubit is the first qubit of the input
stream. The control qubit is then output and the target qubit
stored in the memory. At the second tick the stored qubit
becomes the control qubit and the second qubit of the input
stream becomes the target qubit and so on. Right: An informal
unfolded version of the cascade of CNots.

and outputs a qubit at each clock tick. In order to allow
interactions between systems input at distinct clock ticks, a
memory mechanism is required to store some data across the
ticks. Such a quantum transformation is called a quantum
channel with memory in [8].

We choose to graphically represent the memory mechanism
using delayed traces, i.e., feedback loops that store qubits from
clock tick to the next. The example consisting in applying a
CNot gate on consecutive qubits of a stream is given in Fig.
1.

Delayed traces have been studied [9] as a construction
which can be applied to any cartesian category. We explore
the extension of this construction to the quantum case, since
a quantum graphical language, from a categorical point of
view, form a category which is symmetric monoidal but not
cartesian.

Depicting finite memory quantum computations on streams
does not provide a universal model of quantum computation.
It is however an interesting fragment to explore, strictly more
expressive than memory-free languages designed for finite
registers, and an intermediate scale model potentially easier to
implement using quantum technologies available in the short
term, than a universal quantum computer.

Contributions. We introduce a general construction that ex-
tends any (not necessarily quantum) graphical language G
equipped with a discarding map, to a graphical language



Gω with finite memory acting on streams. The construction
consists in adding a delayed trace to model the memory, as
well as stream constructors and destructors.

A key property of the construction is that the delay only
commutes with causal transformations. Indeed, applying a non
causal transformation before storing a system can produce
some side effect on the output at tick k which would occur
only at tick k + 1 if the transformation is applied later on.
Moreover, the infinite nature of the computation requires the
introduction of a coinduction principle, to show for instance
that storing a system in a memory forever and never using it,
is equivalent to discard this system right away.

We introduce the finite approximations of a Gω-diagram D
as a sequence of G-diagrams: the kth diagram of the sequence
represents the behavior of D from the initial to the kth tick.
The semantics of a Gω-diagram is then defined as the sequence
of interpretations of its finite approximations.

We show universality of the language by characterizing
finite approximations that can be obtained by our language
as being exactly those that are monotone and regular. Finally,
we also show the completeness of the language, up to some
additional assumptions which are satisfied in the quantum case.

II. FINITE MEMORY QUANTUM COMPUTING

In this section, we review various notions of quantum
computing and motivate by examples the kind of computations
the language presented in the next section is designed to
represent.

A. Completely Positives Maps

We use the density matrix formalism of finite dimensional
quantum mechanics over qubits, see [16] for a more complete
presentation. We have a symmetric monoidal category CPM2

of generalized quantum processes over qubits. The objects are
the sets of linear operators of the formM2n×2n (C) represent-
ing systems of n qubits. The morphisms are the linear maps
that are completely positive. Among those maps only the trace
preserving ones correspond to actual physical transformations,
we write this subcategory CPTP2. The state of a n-qubit
system is a density matrix i.e. a map C → M2n×2n (C),
which is positive semi-definite Hermitian and has unit trace.

Let the discard map be def
= ρ 7→ Tr(ρ), which corresponds

to measuring a qubit and forgetting the result. A quantum
evolution f is causal if ◦f = , intuitively causal evolutions
are side-effect free.

B. Quantum Gates

We represent the maps of CPTP2 as gates in circuits. The
composition corresponds to plugging gates and the tensor
product to putting them side by side. Note that usually
quantum circuits cannot represent CPM2 in full generality,
other graphical language like the ZX-calculus have been
designed for this. We only present a few gates, taken both
from the quantum circuits and ZX-calculus, that we will use
in examples.

= |0〉〈0| = ρ 7→ Tr(ρ)

= 1
2

(
1 0
0 1

)
= ρ 7→ 〈0|ρ|0〉

We are now ready to provide concrete examples of quantum
computation with memory.

C. Quantum Computation with Memory

In order to go beyond quantum computation acting on a
finite register of qubits, it is natural to consider streams of
qubits: we consider a global clock, such that at each clock
tick some qubits are input. For allowing interactions across
clock ticks, like applying a CNot on two qubits input at
distinct clock ticks, a memory mechanics is required to store
a qubit and intuitively wait for another qubit to be available.
Quantum channels with memory, introduced by Kretschmann
and Werner [8], can be informally depicted as follows:1

f3

f2

f1

cl
oc

k
tik

s

inputs outputs

. . .

memory

..
.

..
.

Thus the behavior of the computer at clock tick k > 0
is a quantum process fk : Ak ⊗ Mk−1 → Bk ⊗ Mk, with
M0

def
= C. Following the terminology for such processes in

the classical case [9], we call such collection of processes
a stateful morphism sequence. We give the example of a
cascade of CNots gates (see Fig. 1). At first clock tick the
memory is initialized with |0〉〈0|. At each clock tick, a CNot
is applied, the control qubit being the memory qubit and
the target being the input qubit. Finally, the memory qubit
is output and the input qubit is stored in the memory. The
corresponding stateful morphism sequence is:

......
A3

A1

A2

...

B3

B1

B2

f1 :

f2 :

f3 :

...

In practice, one cannot access the whole infinite computa-
tion at once, but only what has been computed up to some
clock tick k. To stop the computation of a stateful morphism
at clock tick k, we discard the memory system Mk and obtain,

by plugging the memories, a process
k⊗

i=1

Ai →
k⊗

i=1

Bi called

1In [8], the authors mainly consider the case of a clock without initializa-
tion, i.e., clock ticks in Z rather than N≥1



the finite approximation at clock tick k. For the cascade of
CNot the sequence of finite approximations is:

A1

B1

B2A1

A2

B1

B3

A3

A1

A2

B2

B1

Ak

Bk

B2A1

A2 ...

B1

1 2 3 k

A stateful morphism sequence leads to a unique sequence
of finite approximations. However, two different stateful mor-
phism sequences can have the same sequence of finite approx-
imations, they are then said observationally equivalent.

III. OUR GRAPHICAL LANGUAGE

A. The Stream Type

We start with a graphical language G, and we define a
graphical language Gω describing computations of G with
finite memory. We first add a temporal information; for every
diagram D ∈ G(a, b), we have in Gω the two following
diagrams:

Diagram Stateful
morphism
sequence

Diagram Stateful
morphism
sequence

ω(D)

...

D

D
ω(a) ω(b)

ι(D) D

...

∅
ι(a) ι(b)

Additionally, we have ♦nω(D) ∈ Gω(♦nω(a),♦nω(b)) and
♦nι(D) ∈ Gω(♦nι(a),♦nι(b)) (for n > 0) that do nothing
for n ticks and then behave as ω(D) or ι(D) starting from
the (n+1)-th tick of the clock rather than from the first one.

To link the types of the form ω(−) and ι(−), we have
in Gω a natural isomorphism unfolding the first tick of a
stream: ♦nω(a) ∼= ♦nι(a) ⊗ ♦n+1ω(a). This isomorphism
is graphically represented by

stream derivative stream initialization

B. The Delayed Trace

For every type a ∈ Gω , we introduce a delay generator in
Gω(a,♦a) to represent memory cells storing information for
one tick. For examples we have:

Diagram Stateful
morphism
sequence

Diagram Stateful
morphism
sequence

ω(a) ♦ω(a)

...

ι(a) ♦ι(a)

...

∅

In the quantum case, using the compact closure of the ZX-
calculus, we are able to define a delayed trace as follows:

D := D

When the category G is not compact closed (or traced), we
need to manually introduce the delayed trace as a generator:

· · ·

We detail in our paper all the equations that this trace-like
primitive must satisfies, and its stateful morphism sequence.

C. Rewriting Rules in Action

The rewriting rules of Gω are of four kinds. Firstly, the
stream derivative and stream initialization form a natural
isomorphism, which allow us to rewrite the cascade of CNot:

= =

Then, we have the rewriting rules of our initial language G:

=

Thirdly, we have the trace-like axioms that the delayed trace
must satisfies, which allow us to complete the unfolding of
the initial value |0〉〈0| from the cascade of CNot:

=

Lastly, there is a co-induction rule which allows one to prove
that storing a system in a memory forever and never using it,
is equivalent to discard this system right away:

ω♦ω

=

D. Soundness, Completeness and Universality

In our paper, we formalize how a semantics for our initial
language J−K : G → C can be used to build a semantics for
our new graphical language L−M : Gω → FinApp(C), where
FinApp(C) is the category of finite approximations satisfying
the properties of monotonicity – which corresponds to the
fact that one cannot change the past, and regularity – which
corresponds to the fact that we use a finite diagram to represent
an infinite sequence. Assuming J−K is itself sound, complete
and universal, and furthermore that C satisfies some conditions,
we then prove the following results:

Theorem 1 (Soundness). Given two diagrams D,D′ ∈ Gω , if
D can be rewritten into D′ then LDM = LD′M.

Theorem 2 (Completeness). Given two diagrams D,D′ ∈ Gω ,
if LDM = LD′M then D can be rewritten into D′.

Theorem 3 (Universality). The functor L−M is full.



REFERENCES

[1] R. Vilmart, “A near-optimal axiomatisation of ZX-calculus for pure
qubit quantum mechanics,” in Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2019.
[Online]. Available: https://arxiv.org/abs/1812.09114

[2] T. Carette, E. Jeandel, S. Perdrix, and R. Vilmart, “Completeness
of graphical languages for mixed states quantum mechanics,” in In-
ternational Colloquium on Automata, Languages, and Programming
(ICALP’19), 2019.

[3] R. Duncan, A. Kissinger, S. Perdrix, and J. van de Wetering,
“Graph-theoretic Simplification of Quantum Circuits with the ZX-
calculus,” Quantum, vol. 4, p. 279, Jun. 2020. [Online]. Available:
https://doi.org/10.22331/q-2020-06-04-279

[4] A. Kissinger and J. van de Wetering, “Reducing the number of non-
Clifford gates in quantum circuits,” Physical Review A, vol. 102, no. 2,
p. 022406, 2020.

[5] M. Hanks, M. P. Estarellas, W. J. Munro, and K. Nemoto, “Effective
compression of quantum braided circuits aided by ZX-calculus,”
Phys. Rev. X, vol. 10, p. 041030, Nov 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.041030

[6] N. de Beaudrap and D. Horsman, “The ZX calculus is a language
for surface code lattice surgery,” Quantum, vol. 4, p. 218, Jan. 2020.
[Online]. Available: https://doi.org/10.22331/q-2020-01-09-218

[7] T. Carette, D. Horsman, and S. Perdrix, “SZX-calculus: Scalable graph-
ical quantum reasoning,” in MFCS 2019-44th International Symposium
on Mathematical Foundations of Computer Science, vol. 138, 2019, pp.
55–1.

[8] D. Kretschmann and R. F. Werner, “Quantum channels with memory,”
Physical Review A, vol. 72, no. 6, p. 062323, 2005.

[9] D. Sprunger and S.-y. Katsumata, “Differentiable causal computations
via delayed trace,” in 2019 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS). IEEE, 2019, pp. 1–12.

[10] A. Kissinger and D. Quick, “A First-order Logic for String
Diagrams,” in 6th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2015), ser. Leibniz International Proceedings
in Informatics (LIPIcs), L. S. Moss and P. Sobocinski, Eds.,
vol. 35. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015, pp. 171–189. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2015/5533

[11] S. Abramsky and C. Heunen, “H*-algebras and nonunital frobenius
algebras: First steps in infinite-dimensional categorical quantum me-
chanics,” in Clifford Lectures, AMS Proceedings of Symposia in Applied
Mathematics, vol. 71, 2012.

[12] B. Coecke and C. Heunen, “Pictures of complete positivity in arbitrary
dimension,” Information and Computation, vol. 250, pp. 50–58, 2016.

[13] S. Gogioso and F. Genovese, “Infinite-dimensional categorical quantum
mechanics,” in Proceedings 13th International Conference on Quantum
Physics and Logic, Glasgow, Scotland, 6-10 June 2016, ser. Electronic
Proceedings in Theoretical Computer Science, R. Duncan and C. He-
unen, Eds., vol. 236. Open Publishing Association, 2017, pp. 51–69.

[14] B. Schumacher and R. F. Werner, “Reversible quantum cellular au-
tomata,” arXiv preprint quant-ph/0405174, 2004.

[15] P. Arrighi, V. Nesme, and R. Werner, “Unitarity plus causality implies
localizability,” Journal of Computer and System Sciences, vol. 77, no. 2,
pp. 372–378, 2011.

[16] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[17] W. F. Stinespring, “Positive functions on C*-algebras,” Proceedings of
the American Mathematical Society, vol. 6, no. 2, pp. 211–216, 1955.

[18] A. Kissinger and S. Uijlen, “A categorical semantics for causal struc-
ture,” in 2017 32nd Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). IEEE, 2017, pp. 1–12.

[19] M. Backens, “The ZX-calculus is complete for stabilizer quantum
mechanics,” New Journal of Physics, vol. 16, no. 9, p. 093021,
sep 2014. [Online]. Available: https://doi.org/10.1088\%2F1367-2630\
%2F16\%2F9\%2F093021

[20] E. Jeandel, S. Perdrix, and R. Vilmart, “A complete axiomatisation of
the ZX-calculus for Clifford+T quantum mechanics,” in Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). ACM, 2018, pp. 559–568.

[21] A. Hadzihasanovic, K. F. Ng, and Q. Wang, “Two complete
axiomatisations of pure-state qubit quantum computing,” in Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, ser. LICS ’18. New York, NY, USA: ACM, 2018, pp. 502–511.
[Online]. Available: http://doi.acm.org/10.1145/3209108.3209128

[22] F. Bonchi, P. Sobociński, and F. Zanasi, “A categorical semantics of
signal flow graphs,” in International Conference on Concurrency Theory.
Springer, 2014, pp. 435–450.

[23] D. R. Ghica, A. Jung, and A. Lopez, “Diagrammatic semantics for digital
circuits,” in 26th EACSL Annual Conference on Computer Science Logic
(CSL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[24] M. Román, “Comb diagrams for discrete-time feedback,” arXiv preprint
arXiv:2003.06214, 2020.

[25] B. Coecke and R. Duncan, “Interacting quantum observables: categorical
algebra and diagrammatics,” New Journal of Physics, vol. 13, no. 4, p.
043016, 2011.

[26] E. Jeandel, S. Perdrix, and R. Vilmart, “Diagrammatic reasoning beyond
clifford+ t quantum mechanics,” in Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM,
2018, pp. 569–578.

[27] F. Zanasi, “Interacting hopf algebras: the theory of linear systems,” arXiv
preprint arXiv:1805.03032, 2018.


