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Lenses encode protocols for synchronising systems. We continue the work begun in the ACT Adjoint
School 2020 to study the properties of the category of small categories and (asymmetric delta) lenses.
The forgetful functor from the category of lenses to the category of functors is already known to
reflect monos and epis and preserve epis; we show that it preserves monos, and give a simpler proof
that it preserves epis. Together this gives a complete characterisation of the monic and epic lenses in
terms of elementary properties of their get functors.

Next, we initiate the study of coequalisers of lenses. We observe that not all parallel pairs of
lenses have coequalisers, and that the forgetful functor from the category of lenses to the category of
functors neither preserves nor reflects all coequalisers. However, some coequalisers are reflected; we
study when this occurs, and then use what we learned to show that every epic lens is regular, and that
discrete opfibrations have pushouts along monic lenses. Corollaries include that every monic lens is
effective, every monic epic lens is an isomorphism, and the class of all epic lenses and the class of
all monic lenses form an orthogonal factorisation system.

1 Introduction

A bidirectional transformation between two systems is a specification of when the joint state of the two
systems should be regarded as consistent, together with a protocol for updating each system to restore
consistency in response to a change in the other [11]. The study of bidirectional transformations goes
back as far as 1981 with Bancilhon and Spyrato’s work on the view-update problem for databases [2].
The view-update problem is about asymmetric bidirectional transformations; those where the state of
one of the systems, called the view, is completely determined by that of the other, called the source.
Bidirectional transformations also arise in many other contexts across computer science, such as when
programming with complex data structures and when linking user interfaces to data models.

An asymmetric state-based lens is a mathematical encoding of an asymmetric bidirectional transfor-
mation in which the consistency restoration updates to the source are assumed to be dependent only on
the old source state and the updated view state. If S is the set of source states and V is the set of view
states, such a lens consists of a get function S→ V and a put function S×V → S which, ideally, satisfy
certain laws. The earliest known account of asymmetric state-based lenses may be found in Oles’ PhD
thesis [16, Chapter VI], where they are called extensions of store shapes; they are a key ingredient in
his semantics for an imperative stack-based programming language with block-scoped variables because
they capture the essential properties of a data store which changes shape as variables come into and go
out of scope. All recent notions of lens, including the name lens, may be traced back to Pierce et al.’s in-
dependent discovery of asymmetric state based lenses [9], more than twenty years after Oles. Pierce et al.
popularised the use of lenses and lens combinators for programming with complex data structures.

Diskin et al. highlighted the inadequacy of state-based lenses as a general mathematical model for
bidirectional transformations [7], providing several examples of situations in which consistency restora-
tion would benefit from knowing more about each change to the view than just the view’s new state. In
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an asymmetric delta lens, their proposed alternative, systems are modelled as categories of states and
transitions (deltas) rather than simply as sets of states, and the put operation takes as input specifically
which transition occurred in the view rather than just the end state of that transition.

Application of category theory to the study of lenses has already proved fruitful. Johnson and Rose-
brugh’s research program [12, 13, 14] has enabled a unified treatment of symmetric and asymmetric delta
lenses, with the perspective that a symmetric delta lens is an equivalence class of spans of asymmetric
delta lenses. Ahman and Uustalu’s observation that asymmetric delta lenses are compatible functor co-
functor pairs [1], and Clarke’s generalisation of these lenses to the internal category theory setting [5],
have enabled an abstract diagrammatic approach to proofs involving these lenses [6], in which we may
profit from the already well-developed theory of functors and opfibrations. Yet, until the work of Chol-
let et al. at the ACT Adjoint School 2020 [4], little was known about the category of asymmetric delta
lenses. Building on their work, this paper aims to further our understanding of this category.

Outline

Henceforth, we refer to asymmetric delta lenses simply as lenses, which we formally define in Section 2.
In Section 3, we prove the conjecture by Chollet et al. [4] that the forgetful functor from the category

of lenses to the category of functors preserves monos. Together with their result that the forgetful functor
also reflects monos, we deduce that the monic lenses are precisely the unique lenses on cosieves and that
the subobjects (in the category of lenses) of a category are in bijection with out-degree-zero subcategories
of that category. We also provide a simpler proof than the original one sketched by Steve Lack that the
forgetful functor preserves epis.

In Section 4, we initiate the study of coequalisers of lenses. We begin with examples of how they
aren’t as well behaved as one might hope; specifically, not all parallel pairs of lenses have coequalisers,
and the forgetful functor neither preserves nor reflects all coequalisers. We then prove a result (Theo-
rem 4.5) about the coequalisers which are actually reflected by the forgetful functor.

In Section 5, we use Theorem 4.5 to show that the category of lenses has pushouts of discrete opfi-
brations along monos. We then show that every monic lens is effective. It follows that the classes of all
monos, all effective monos, all regular monos, all strong monos and all extremal monos in the category
of lenses coincide, and thus also that all lenses which are both monic and epic are isomorphisms.

In Section 6, we use Theorem 4.5 again to show that every epic lens is regular. It follows that the
classes of all epis, all regular epis, all strong epis and all extremal epis in the category of lenses coincide.
It also follows that the class of all epic lenses is left orthogonal to the class of all monic lenses. Together
with other known results, this means that they form an orthogonal factorisation system.

2 Background

Notation

Application of functions (functors, lenses, etc.) is written by juxtaposing the function name with its
argument. Application is right associative (unlike in Haskell), so an expression like FGx parses as F(Gx)
and not (FG)x. Parentheses are only used when needed or for clarity. Binary operators like ◦ have lower
precedence than application, so an expression like Fa◦Fb parses as (Fa)◦ (Fb) and not F

(
(a◦F)b

)
.

Let Cat denote the category whose objects are small categories and whose morphisms are functors.
Categories with boldface names A, B, C, etc. are always small. We write |C| for the set of objects of a
small category C, and, for all X ,Y ∈ |C|, we write C(X ,Y ) for the set of morphisms of C from X to Y .
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For each X ∈ |C|, we write C(X ,∗) for the set
⊔

Y∈|C|C(X ,Y ) of all morphisms in C out of X . We write
src f and tgt f for, respectively, the source and target of a morphism f . We also write f : X → Y to say
that X ,Y ∈ |C| and f ∈C(X ,Y ). The composite of morphisms f : X →Y and g : Y → Z is denoted g◦ f .

The category with a single object 0 and no non-identity morphisms, also known as the terminal
category, is denoted 1. The category with two objects 0 and 1 and a single non-identity morphism,
namely u : 0→ 1, also known as the interval category, is denoted 2. The category with two objects
0 and 1 and two non-identity morphisms, namely v : 0→ 1 and v−1 : 1→ 0, also known as the free
living isomorphism, is denoted I. We will abuse notation and identify objects and morphisms of a small
category C with the corresponding functors 1→ C and 2→ C respectively.

If (1) is a pushout square in Cat and F ′ : A→E and G′ : B→E are functors for which F ′◦S =G′◦T ,
then we write [F ′, G′] for the functor C→ E induced from F ′ and G′ by the universal property of the
pushout. Similarly, if (1) is a pullback square in Cat and S′ : E→A and T ′ : E→B are functors for which
F ◦ S′ = G ◦T ′, then we write 〈S′, T ′〉 for the functor E→ D induced from S′ and T ′ by the universal
property of the pullback. By our abuse of notation, if A ∈ |A| and B ∈ |B| are such that FA = GB, then
〈A, B〉 is the object of D selected by the functor 1→D induced by the universal property of the pullback
from the functors 1→ A and 1→ B that respectively select the objects A and B.

D B

A C

T

S G

F

(1)

Lenses and discrete opfibrations

First, we recall Diskin et al.’s definition of a (asymmetric delta) lens [7].

Definition 2.1. Given small categories A and B, a lens F : A→ B consists of

• a functor F : A→ B, called the get functor of F , and

• a function FA : B(FA,∗)→ A(A,∗) for each A ∈ |A|, collectively known as the put functions,

such that

• PutGet: FFAb = b for all A ∈ |A| and all b ∈ B(FA,∗),

• PutId: FA idFA = idA for all A ∈ |A|, and

• PutPut: FA(b′ ◦b) = FA′b′ ◦FAb for all A ∈ |A|, b ∈ B(FA,∗), b′ ∈ B(FA′,∗), where A′ = tgtFAb.

There is a category Lens whose objects are small categories and whose morphisms are lenses. The
composite G ◦F of lenses F : A→ B and G : B→ C has get functor which is the composite of the get
functors of G and F , and has (G◦F)Ac = FAGFAc for all A ∈ |A| and all c ∈ C(GFA,∗). There is also
an identity-on-objects forgetful functor U : Lens→ Cat that sends a lens to its get functor.

Definition 2.2. A functor F : A→ B is a discrete opfibration if, for each A ∈ |A| and each b ∈ B(FA,∗),
there is a unique a ∈ A(A,∗) such that Fa = b.

Remark 2.3. If F : A→ B is a discrete opfibration, then there is a unique lens mapped by U to F . We
will abuse notation and also use the name F to refer to this unique lens above F .

We also recall Johnson and Roseburgh’s “pullback” of a cospan of lenses [12], which we will refer
to as their fake pullback (not to be confused with Street’s fake pullback [18]).
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Definition 2.4. The fake pullback of a cospan A F−→C G←−B in Lens is a span A G←−D F−→B in Lens where

• the get functors of F and G form a pullback square

D B

A C

UF

UG UG

UF

in Cat (this determines them up to isomorphism), and

• for each D ∈ |D|, each a ∈ A
(
GD,∗

)
, and each b ∈ B

(
FD,∗

)
,

FDb =
〈
FGDGb, b

〉
and GDa =

〈
a, GFDFa

〉
.

When F = G, the lenses F ,G : D→ A are also called the fake kernel pair of F .

3 Characterising monic and epic lenses

Monic lenses

We will study the monos in Lens via their relation to those in Cat, expressed as follows.

Theorem 3.1. The functor U preserves and reflects monos.

Reflection was proved and preservation conjectured by Chollet et al. [4]. Recalling that a morphism
is monic if and only if it has a kernel pair with both morphisms equal, we may prove preservation.

Proof that U preserves monos. Let M : A→ B be a monic lens, and let P1,P2 : KerUM→ A be its fake
kernel pair in Lens. As M is monic and M ◦P1 = M ◦P2, actually P1 = P2, and so UP1 = UP2. But UP1
and UP2 are the (real) kernel pair of UM in Cat. Hence UM is a monic functor.

Chollet et al. [4] also showed that a lens’ get functor is monic if and only if it is a cosieve.

Definition 3.2. A cosieve is an injective-on-objects discrete opfibration.

Corollary 3.3. The functor U restricts to a bijection between monic lenses and cosieves.

Proof. A cosieve is a discrete opfibration, so there is a unique lens above it; by reflection, this lens is
monic. Conversely, the get functor of a monic lens is, by preservation, monic, and so is a cosieve.

The above result says that monic lenses and cosieves are essentially the same thing; we continue to
use the term cosieve for functors when we wish to distinguish these from monic lenses.

Lens images and factorisation

The images of the object and morphism maps of a functor don’t always form a subcategory of the func-
tor’s target category. This is why the image of a functor is usually defined to be the smallest subcategory
of its target containing the images of its object and morphism maps. The image of a lens is defined to be
the image of its get functor. Images of lenses are better behaved than those of functors.

Proposition 3.4. A lens’ image consists only of the images of its get functor’s object and morphism maps.
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Actually, we can say more.
Definition 3.5. A subcategory B of A is out-degree-zero if for all B∈ |B| and all a∈A(B,∗), a∈B(B,∗).
Proposition 3.6. The image of a lens is an out-degree-zero subcategory of its target.

For each small category C, if two lenses with target C are isomorphic in the slice category Lens/C
then they have the same image. In particular, the image of a subobject of C is well defined. This allows
the following characterisation of subobjects in Lens.
Corollary 3.7. For each small category C, the function from the set of subobjects of C to the set of
out-degree-zero subcategories of C that sends a subobject to its image is a bijection.

Proof. An out-degree-zero subcategory inclusion functor is a cosieve and thus a monic lens. The inverse
function sends each out-degree-zero subcategory to the equivalence class of its inclusion lens.

Recall that a morphism e : A→ B is left orthogonal to a morphism m : C→ D if, for all pairs of
morphisms f : A→C and g : B→D such that g◦e = m◦ f , there is a unique morphism h : B→C, called
the diagonal filler, such that f = h ◦ e and g = m ◦ h. Also recall that classes E and M of morphisms
form an orthogonal factorisation system if E is the class of all morphisms that are left orthogonal to all
morphisms in M , and every morphism f factors as f = m◦ e for some e ∈ E and some m ∈M .
Remark 3.8. Johnson and Roseburgh observed that the class of surjective-on-objects lenses and the class
of injective-on-objects-and-morphisms lenses form an orthogonal factorisation system on Lens where a
lens factors as its corestriction onto its image followed by the inclusion of its image into its target [15].

From the previous subsection, we already know that the right class of this factorisation system is the
class of all monic lenses. In the next subsection, we will see that its left class is the class of all epic
lenses. In Section 6, we will deduce the orthogonality without needing to construct diagonal fillers.

Epic lenses

We may also study the epis in Lens via their relation to those in Cat.
Theorem 3.9. The functor U preserves and reflects epis.

Again, reflection was proved and preservation conjectured by Chollet et al. [4]. Steve Lack was the
first to sketch a proof of the preservation of epis; we present a new, simpler proof below. First, we recall
some preliminary results about epic functors and epic lenses.
Proposition 3.10. Every epic functor is surjective on objects. Every functor which is surjective both on
objects and on morphisms is epic.

Recall that not all epic functors are surjective on morphisms.
Example 3.11. Let J : 2→ I be the functor that sends the non-identity morphism u of the interval cate-
gory 2 to the morphism v of the free living isomorphism I. Then J is epic because any two functors out
of I which agree on v must also agree on v−1. However, the morphism v−1 is not in the image of J.
Remark 3.12. If the get functor of a lens is surjective on objects, then it is also surjective on morphisms
by Proposition 3.6, and so it is an epic functor by Proposition 3.10.

Proof that U preserves epis. Let F : A→ B be a lens, and suppose that UF is not an epic functor. By
Remark 3.8, F has a factorisation F = M ◦F with A = tgtF the image of F . Let J1,J2 : B→ CokerUM
be the cokernel pair of UM in Cat. It is well known that cosieves are pushout stable (more details in
Proposition 5.1). As UM is a cosieve (Corollary 3.3), so are J1 and J2. Thus J1 and J2 are uniquely
lenses, and J1 ◦M = J2 ◦M in Lens. By Remark 3.12, UF is not surjective on objects, so there is a
B ∈ |B| \ |A|, and J1B 6= J2B. As J1 ◦F = J2 ◦F , but J1 6= J2, F is not an epic lens.
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Corollary 3.13. Epic lenses are surjective on objects and morphisms.

Proof. By Theorem 3.9 and Proposition 3.10, epic lenses are surjective on objects. By Proposition 3.6,
the image of a lens is a full subcategory, and thus epic lenses are also surjective on morphisms.

4 Coequalisers of lenses

Given morphisms f1, f2 : A→ B, we say that a morphism e : B→C coforks f1 and f2 if e ◦ f1 = e ◦ f2.
Some authors would use the verb coequalise where we use the verb cofork. Unlike those authors, we say
that e coequalises f1 and f2 only when e is universal among coforks of f1 and f2.

Non-existence, non-preservation and non-reflection of coequalisers

Recall that Cat has all coequalisers. Shortly, we will construct several counterexamples to the well-
behavedness of coequalisers in Lens, at least with respect to those in Cat. To do this, we will use the
following proposition, which gives necessary conditions for a cofork of lenses to be a coequaliser.

Proposition 4.1. Let F1,F2 : A→ B be lenses with coequaliser E : B→ C in Lens. Then

(1) for each cofork G : B→D of F1 and F2, GBd = EBEGBd for all B ∈ |B| and all d ∈D(GB,∗); and

(2) in particular, E is the unique lens above UE that coforks F1 and F2.

Proof. For (1), if G : B→ D coforks F1 and F2, then there is a lens H : C→ D such that G = H ◦E, and
so GBd = (H ◦E)Bd = EBHEBd = EBEEBHEBd = EBE(H ◦E)Bd = EBEGBd. For (2), if G : B→ C is
a lens above UE that coforks F1 and F2, then GBc = EBEGBc = EBGGBc = EBc for each B ∈ |B| and
each c ∈ C(EB,∗), and so G = E.

The first example shows that Lens doesn’t have all coequalisers, and that U doesn’t reflect them.

Example 4.2. Let A and B be the preordered sets generated respectively by the graphs

Y1 X Y2

Y

f1 f2

f and
Y ′1 X ′ Y ′2

f ′1 f ′2

.

Let F1,F2 : A→ B be the unique lenses that both send X to X ′, Y1 to Y ′1, Y2 to Y ′2, and such that F1Y =Y ′1,
F1

X f ′1 = f1, F2Y = Y ′2, and F2
X f ′2 = f2. Let G : B→ 2 be the unique functor that sends X ′ to 0, and both

Y ′1 and Y ′2 to 1; G coequalises UF1 and UF2 in Cat. There are only two lens structures on G that cofork
F1 and F2 in Lens; one is determined by G1

X ′u = f ′1 and the other by G2
X ′u = f ′2. By Proposition 4.1,

neither G1 nor G2 coequalises F1 and F2. Thus U doesn’t reflect the coequaliser G of UF1 and UF2.
Actually F1 and F2 don’t have a coequaliser in Lens. Assume that E : B→ C is such a coequaliser.

Then E f ′1 = EF1 f = EF2 f = E f ′2. As G1 coforks F1 and F2, there is a lens H : C→ 2 such that G1 =
H ◦E. As HEX ′ = G1X ′ 6= G1Y ′1 = HEY ′1, we must have EX ′ 6= EY ′1. Hence EX ′ and EY ′1 are distinct
objects of the image of E, and idEX ′ , E f ′1 and idEY ′1

are distinct morphisms of the image of E. As E is a
coequaliser, it is epi, and so, by Corollary 3.13, its image is all of C. Thus UH is an isomorphism in Cat,
and so H is an isomorphism in Lens. Hence G1 also coequalises F1 and F2, which is a contradiction.

There are even parallel pairs of lenses for which the coequaliser of their get functors has a unique
lens structure that coforks them, and yet doesn’t coequalise them.
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Example 4.3. Let A, B and C be the preordered sets generated respectively by the graphs

Z1 X Y Z2

Z

h h2

fh1 g
Z′1 X ′ Y ′ Z′2

h′2

f ′h′1 g′
X ′′ Y ′′ Z′′

h′′

f ′′ g′′

Let F1,F2 : A→ B be the unique lenses that both send X to X ′, Y to Y ′, Z1 to Z′1, Z2 to Z′2, and such that
F1Z = Z′1, F1

X h′1 = h1 and F2Z = Z′2. Let E : B→ C be the unique lens that sends X ′ to X ′′, Y ′ to Y ′′,
and both Z′1 and Z′2 to Z′′. Then UE coequalises UF1 and UF2 in Cat, and E coforks F1 and F2 in Lens.
However, E doesn’t coequalise F1 and F2 in Lens. Indeed, if G : B→ 2 is the unique lens that sends X ′ to
0, all of Y ′, Z′1 and Z′2 to 1, and for which GX ′u= h′1, then EX ′EGX ′u=EX ′Eh′1 =EX ′h′′= h′2 6= h′1 =GX ′u.

The final example shows that U doesn’t preserve coequalisers. It also shows that there are parallel
pairs of lenses for which the coequaliser of their get functors has no lens structure that coforks them.

Example 4.4. Let A be the preordered set generated by the graph

Y1 X Y2
f1 f2

Let I : A→ A denote the identity lens, and let S : A→ A be the unique lens that maps X to X , Y1 to Y2
and Y2 to Y1. The coequaliser of UI and US in Cat is the unique functor E : A→ 2 that sends X to 0 and
both Y1 and Y2 to 1. Recall that 1 is terminal in Lens [4]. We claim that the coequaliser of I and S in
Lens is the unique lens ! : A→ 1. Let G : A→ C be a lens that coforks I and S in Lens. Let f = G f1.
Then f = G f1 = GI f1 = GS f1 = G f2. As GX f ∈ A(X ,∗), it is one of f1, f2 and idX . If GX f = f1, then

f1 = IX f1 = IX GX f = (G◦ I)X f = (G◦S)X f = SX GX f = SX f1 = f2,

which is a contradiction. We get a similar contradiction if GX f = f2. By elimination, GX f = idX , and
so f = GGX f = G idX = idGX . The image of G thus consists of the object GX and the morphism idGX .
If H : 1→ C is a lens such that G = H ◦ !, then H must send 0 to GX , and this uniquely determines H.
As the image of any lens, in particular G, is an out-degree-zero subcategory of its target category, this
definition of H does indeed give a lens, and G = H ◦ !. Of course, the factorisation G = H ◦ ! is really the
image factorisation of G from Remark 3.8.

Coequalisers which are reflected

Although the counterexamples in the previous subsection suggest that coequalisers in Lens have little
relation to those in Cat, we will see in Theorem 5.4 and Corollary 6.4 two classes of coequalisers in
Lens which do lie over coequalisers in Cat. The following theorem, a partial converse to Proposition 4.1,
reduces checking the coequaliser property in these cases to checking that equation (2) always holds.

Theorem 4.5. Let F1,F2 : A→B be lenses. Let E : B→C be a cofork of F1 and F2 in Lens, and suppose
that UE coequalises UF1 and UF2 in Cat. Then E coequalises F1 and F2 in Lens if and only if for all
lenses G : B→ D that cofork F1 and F2 in Lens, all B ∈ |B| and all d ∈ D(GB,∗), we have

GBd = EBEGBd (2)
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In the proof of the following lemma and again, later, in the proof of Lemma 5.3, we use the induction
principle for the equivalence relation ' on a set S generated by a binary relation R on S, that is,

∀P x0 y0.


x0 ' y0

∧ ∀x y. x R y =⇒ P(x,y)

∧ ∀x. P(x,x)

∧ ∀x y. [x' y ∧ P(x,y)] =⇒ P(y,x)

∧ ∀x y z. [x' y ∧ P(x,y) ∧ y' z ∧ P(y,z)] =⇒ P(x,z)

 =⇒ P(x0,y0). (3)

Lemma 4.6. Let F1,F2 : A→ B be lenses. Let E : B→ C be a cofork of F1 and F2 in Lens, and suppose
that UE coequalises UF1 and UF2 in Cat. Let G : B→ D be a lens that coforks F1 and F2 in Lens, and
let H : C→ D be the unique functor such that UG = H ◦UE. Then there is a unique lens structure on H
that, for all B ∈ |B| and all d ∈ D(GB,∗), satisfies the equation

HEBd = EGBd. (4)

Proof. For each C ∈ |C|, as UE is epic, there is a B ∈ |B| such that EB =C. Hence, we may define HC

using equation (4), so long as, for all B1,B2 ∈ |B|, if EB1 = EB2 then, for all d ∈ D(EB1,∗), we have
EGB1d = EGB2d. Let ' be the smallest equivalence relation on |B| such that F1A' F2A for all A ∈ |A|.
As UE coequalises UF1 and UF2 in Cat, we have [3, Proposition 4.1], for all B1,B2 ∈ |B|, that EB1 =EB2
if and only if B1 ' B2. We proceed using the induction principle in equation (3). The proof obligations
from the reflexivity, symmetry and transitivity axioms for' hold as = is an equivalence relation. For the
remaining one, for all A ∈ |A| and all d ∈ D(F1A,∗), we have

EGF1Ad = EF1F1
AGF1Ad = (E ◦F1)(G◦F1)

Ad = (E ◦F2)(G◦F2)
Ad = EF2F2

AGF2Ad = EGF2Ad.

Define HC using equation (4). It remains to check that the lens laws hold for H. For all C ∈ |C|,
there is a B ∈ |B| such that EB =C, and HC idHC = EGB idGB = E idB = idC; hence PutId holds. For all
C ∈ |C|, all d ∈ D(HC,∗) and all d′ ∈ D(tgtd,∗), there is a B ∈ |B| such that EB =C, and

HC(d′ ◦d) = EGB(d′ ◦d) = E
(
GB′d′ ◦GBd

)
= EGB′d′ ◦EGBd = HC′d′ ◦HCd,

where B′ = tgtGBd and C′ = EB′; hence PutPut holds. Finally, for all C ∈ |C| and all d ∈D(HC,∗), there
is a B ∈ |B| such that EB =C, and HHCd = HEGBd = GGBd = d; hence PutGet holds.

Proof of Theorem 4.5. We proved the only if direction in Proposition 4.1. For the if direction, suppose,
for all lenses G : B→D that cofork F1 and F2, that equation (2) always holds. We must show that E is the
universal cofork of F1 and F2 in Lens. Let G : B→ D be another cofork of F1 and F2 in Lens. Suppose
that there is a lens H : C→D such that G=H ◦E. Then UG=UH ◦UE, and so UH is the unique functor
that composes with UE to give UG. Let C ∈ |C| and d ∈ D(HC,∗). As UE is epic, there is a B ∈ |B|
such that EB = C. Then HCd = EEBHCd = E(H ◦E)Bd = EGBd. Hence H is uniquely determined.
Now let H : C→ D be the lens defined as in Lemma 4.6. For all B ∈ |B| and all d ∈ D(GB,∗), we have
GBd = EBEGBd = EBHEBd = (H ◦E)Bd, and so G = H ◦E.

Corollary 4.7. Let F1,F2 : A→ B be lenses. Let E : B→ C be a cofork of F1 and F2 in Lens, and
suppose that UE coequalises UF1 and UF2. If UE is a discrete opfibration then E coequalises F1 and F2.

Proof. Let G : B→ D be a lens that coforks F1 and F2, let B ∈ |B| and let d ∈ D(GB,∗). Then GBd and
EBEGBd are both elements of B(B,∗) which are sent by E to the same morphism EGBd of C. If UE is a
discrete opfibration, then EGBd has a unique lift to B(B,∗), and so GBd and EBEGBd must be equal.
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5 Pushouts of discrete opfibrations along monos

In the proof that U preserves epis (Theorem 3.9), we used the well-known result that cosieves are pushout
stable to explain why the pushout in Cat of the get functors of a span of monic lenses lifts uniquely to
a commutative square in Lens; this lifted square is actually a pushout square in Lens. In this section,
we will show, more generally, that Lens has pushouts of discrete opfibrations along monics, and that U
creates these pushouts. In what follows, we use square brackets for equivalence classes of elements.

Fritsch and Latch [10, Proposition 5.2] explicitly construct the pushout in Cat of a functor along a full
monic functor. Specialising to when the full monic functor is a cosieve, and recalling that the image of a
cosieve is out-degree-zero, we obtain the following simplification of Fritsch and Latch’s construction.

Proposition 5.1. Let F : A→ C be a functor and J : A→ B be a cosieve. Then

A B

C D

J

F F

J

is a pushout square in Cat and J is a cosieve, where D, F and J are defined as follows:

• Object set:
|D|= |C|t

(
|B| \ |A|

)
• Hom-sets: for all C1,C2 ∈ |C| and all B1,B2 ∈ |B| \ |A|,

D(C1,C2) = C(C1,C2) D(C1,B2) = /0

D(B1,B2) = B(B1,B2) D(B1,C2) =
( ∐

A∈|A|

C(FA,C2)×B(B1,A)
)/
∼

where ∼ is the equivalence relation on
∐

A∈|A|C(FA,C2)×B(B1,A) generated by (c,a ◦ b) ∼
(c◦Fa,b) for all A1,A2 ∈ |A|, all b ∈ B(B1,A1), all a ∈ A(A1,A2) and all c ∈ C(FA2,C2).

• Composition: for all B1,B2,B3 ∈ |B| \ |A|, all A ∈ |A|, all C1,C2,C3 ∈ |C|, all b1 ∈ D(B1,B2), all
b2 ∈ D(B2,B3), all a ∈ D(B2,A), all c ∈ D(FA,C2), all c1 ∈ D(C1,C2) and all c2 ∈ D(C2,C3),

b2 ◦D b1 = b2 ◦B b1 [(c,a)]◦D b1 = [(c,a◦B b1)]

c2 ◦D c1 = c2 ◦C c1 c2 ◦D [(c,a)] = [(c2 ◦C c,a)]

• Identity morphisms: same as in B and C.

• Injections: the functor J : C→ D is the obvious inclusion of C as a full subcategory of D; the
functor F : B→D is defined, for all B,B′ ∈ |B|\|A|, all A,A′ ∈ |A|, all b∈B(B,B′), all b′ ∈B(B,A)
and all a ∈ B(A,A′), as follows:

FB = B FA = FA

Fb = b Fb′ = [(idFA,b′)] Fa = Fa

Theorem 5.2. The pushout in Cat of a discrete opfibration along a cosieve is a discrete opfibration.
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Lemma 5.3. Let F : A→ C be a discrete opfibration, let J : A→ B be a cosieve, let B ∈ |B| \ |A| and
let C ∈ |C|. Then, for all A1,A2 ∈ A, all b1 ∈ B(B,A1), all b2 ∈ B(B,A2), all c1 ∈ C(FA1,C) and all
c2 ∈ C(FA2,C), if (c1,b1)∼ (c2,b2) then FA1c1 ◦b1 = FA2c2 ◦b2.

Proof. We proceed by induction, using the induction principle for ∼ in equation (3). The proof obli-
gations from the reflexivity, symmetry and transitivity axioms for ∼ hold because = is an equivalence
relation. For the remaining proof obligation, for all A1,A2 ∈ |A|, all b ∈ B(B,A1), all a ∈ A(A1,A2) and
all c ∈ C(FA2,C), we have FA1Fa = a as F is a discrete opfibration, and so

FA2c◦ (a◦b) = FA2c◦FA1Fa◦b = FA1(c◦Fa)◦b.

Proof of Theorem 5.2. Using the notation of Proposition 5.1, suppose that F is a discrete opfibration. We
must show that F is also a discrete opfibration. Let B ∈ |B| and d ∈ D(FB,∗).

Suppose that B ∈ |A|. Then FB = FB, and d ∈ C(FB,∗). As F is a discrete opfibration, there is a
unique a ∈ A(B,∗) such that d = Fa. But A(B,∗) = B(B,∗) as A is out-degree-zero in B; also Fa = Fa
for each a ∈ B(B,∗). Hence there is a unique a ∈ B(B,∗) such that d = Fa.

Suppose that B ∈ |B| \ |A| and tgtd ∈ |B| \ |A|. Then FB = B, d ∈ B(B,∗) and Fd = d. As F is
injective on the morphisms of B not in A, d is the unique morphism in B(B,∗) mapped by F to d.

Otherwise, B∈ |B|\|A| and tgtd ∈ |C|. Then FB=B, and d = [(c1,b1)] for some A1 ∈ |A|, some b1 ∈
B(B,A1) and some c1 ∈ C(FA1,C), where C = tgtd. For uniqueness of lifts, suppose that b2 ∈ B(B,∗)
is such that d = Fb2. Let A2 = tgtb2. Then A2 ∈ |A| as FA2 = tgtd = C, and so Fb2 = [(idC,b2)]. As
d = Fb2, we have (idC,b2)∼ (c1,b1). By the lemma, b2 = FA2 idC ◦b2 = FA1c1 ◦b1; this determines b2.
For existence of lifts, note that F(FA1c1 ◦b1) = [(idC,FA1c1 ◦b1)] = [(FFA1c1,b1)] = [(c1,b1)] = d.

Theorem 5.4. The functor U creates pushouts of monic lenses with discrete opfibrations.

Proof. Using the notation of Proposition 5.1, suppose that F is a discrete opfibration. Then F is also a
discrete opfibration (Theorem 5.2). Let JB : B→ BtC and JC : C→ BtC be the coproduct injection
functors. Coproduct injections in Cat are always discrete opfibrations, as is the coproduct copairing of
any two discrete opfibrations. Hence JB, JC and [J, F ] are all discrete opfibrations. As the composite of
two discrete opfibrations is a discrete opfibration, so is JB ◦ J and JC ◦F . So far, we know that [J, F ] is
the coequaliser in Cat of JB ◦J and JC ◦F , all of these functors have canonical lens structures as they are
discrete opfibrations, and [J, F ] coforks JB ◦ J and JC ◦F in Lens. As [J, F ] is a discrete opfibration, the
conditions of Theorem 4.5 are satisfied, and so [J, F ] coequalises JB ◦J and JC ◦F in Lens. As U creates
coproducts [4], it follows that J and F exhibit D as the pushout of J and F in Lens.

One might hope that the above result generalises to pushouts of two discrete opfibrations, or of
arbitrary lenses along monics; this isn’t the case. The following is an example of two discrete opfibrations
whose pushout injection functors have no lens structures that give a commutative square of lenses.

Example 5.5. Let A and B be the preordered sets generated respectively by the graphs

Y ′1 X ′ Y ′2 Y ′′1 X ′′ Y ′′2
f ′1 f ′2 f ′′1 f ′′2 and Y1 X Y2

f1 f2
.

Let F : A→ B be the unique functor that sends both X ′ and X ′′ to X , both Y ′1 and Y ′′1 to Y1, and both
Y ′2 and Y ′′2 to Y2. Let G : A→ B be the unique functor that sends both X ′ and X ′′ to X , both Y ′1 and Y ′′2
to Y1, and both Y ′2 and Y ′′1 to Y2. Both F and G are discrete opfibrations. Their pushout in Cat is 2; the
pushout injections F ,G : B→ 2 are both the unique functor that sends X to 0, and both Y1 and Y2 to 1.
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There are two different lens structures on this functor; one lifts the unique morphism u of 2 to f1, the
other lifts it to f2. This gives four different combinations of lens structures on F and G. Assume, for
a contradiction, that one of these combinations satisfies FG = GF in Lens. As GX ′FX u = FX ′GX u, we
must have FX u = GX u. If FX u = f1, then GX ′′FX u = GX ′′ f1 = f ′2 and FX ′′GX u = FX ′′ f1 = f ′1 6= f ′2, which
is a contradiction. If FX u = f2, we obtain a similar contradiction.

Next is an example of a lens and a cosieve where the pushout of the get functor of the lens along the
cosieve doesn’t have a lens structure (incidentally this lens and cosieve don’t have a pushout in Lens).

Example 5.6. Let B and D be the preordered sets generated respectively by the graphs

X W Y

Z2 Z1 Z3

s

f g

t and
X ′ W ′ Y ′

Z′
s′

f ′ g′

t ′
.

Let A be the out-degree-zero subcategory of B with the objects Z1, Z2 and Z3, and let J : A � B the
inclusion lens. As 1 is terminal in Lens [4], there is a unique lens F : A→ 1. By Proposition 5.1, the
pushout of UF along UJ in Cat is the unique functor F : B→D that maps W to W ′, X to X ′, Y to Y ′, and
all of Z1, Z2 and Z3 to Z′. The functor F has no lens structure, otherwise we could derive the contradiction

s◦ f = FX s′ ◦FW f ′ = FW (s′ ◦ f ′) = FW (t ′ ◦g′) = FY t ′ ◦FW g′ = t ◦g.

Proposition 5.7. Every monic lens is effective (i.e. is the equaliser of its cokernel pair).

Proof. Let M : A→ B be a monic lens, and let J1,J2 : B→CokerM be its cokernel pair, which exists by
Theorem 5.4. Based on Proposition 5.1, if B ∈ |B| is such that J1B = J2B, then B ∈ |A|; and similarly for
morphisms of B. In particular, the image of any lens which forks J1 and J2 is contained in A, and thus its
corestriction to A is the unique comparison lens.

Corollary 5.8. In Lens, the classes of all monos, effective monos, regular monos, strong monos and
extremal monos coincide.

Corollary 5.9. Every lens that is both epic and monic is an isomorphism.

6 Regular epic lenses

In this section, we show that all epis in Lens are regular. This gives us another class of coequalisers in
Lens, namely, the epic lenses. For contrast, recall that not all epis in Cat are regular.

Example 6.1. In Example 3.11, we saw that the functor J : 2→ I is epic. It is, however, not a regular
epi. Indeed, if J coforks F1,F2 : A→ 2, then F1 = F2 as J is monic, and so id2 is the coequaliser of F1
and F2, but 2 and I aren’t isomorphic.

Proposition 6.2. The get functor of every epic lens is an effective epi in Cat.

A functor E : B→ C is surjective on composable pairs if for each composable pair (c,c′) of C,
there is a composable pair (b,b′) of B such that Eb = c and Eb′ = c′; such functors are necessarily also
surjective on objects and morphisms. If E : B→ C is an epic lens, then UE is surjective on composable
pairs; indeed, if (c,c′) is a composable pair of C, then there is a B ∈ |B| such that EB = srcc, and
(EBc,E tgtEBcc′) is a composable pair above (c,c′). Hence it suffices to prove the following lemma.
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Lemma 6.3. All functors that are surjective on composable pairs are effective epis in Cat.

Proof. Let E : B→ C be a functor that is surjective on objects and composable pairs, and let its kernel
pair be F1,F2 : KerE→B. We must show that E coequalises F1 and F2. Let G : B→D cofork F1 and F2.

Suppose that there is a functor H : C→ D such that G = H ◦E. As E is surjective on objects, for all
C ∈ |C| there is a B ∈ |B| such that EB = C, and so HC = HEB = GB; this equation determines H on
objects. As E is surjective on morphisms, a similar equation determines H on morphisms.

To define H : C→ D with these equations, the values of GB and Gb should be independent of the
choice of B above C and b above c. For all C ∈ |C| and all B,B′ ∈ |B| such that EB = EB′ =C, we have
GB = GF1〈B, B′〉= GF2〈B, B′〉= GB′, where 〈B, B′〉 ∈ |KerE| comes from the pullback property; hence
the object map of H is well defined. Its morphism map is similarly also well defined.

Define H with the above equations. By construction, G = H ◦E. We must show that H is a functor.
For all C ∈ |C|, there is a B ∈ |B| such that EB =C, and H idC = G idB = idGB = idHC; thus H preserves
identities. For all composable pairs c and c′ of C, there is a composable pair b and b′ of B such that
Eb = c and Eb′ = c′, and H(c′ ◦c) = G(b′ ◦b) = Gb′ ◦Gb = Hc′ ◦Hc; thus H preserves composites.

Corollary 6.4. Every epic lens coequalises its fake kernel pair, and so is regular.

Proof. Let E : B→ C be an epic lens. Let F1,F2 : KerUE → B be the fake kernel pair of E in Lens.
By Proposition 6.2, UE coequalises UF1 and UF2 in Cat. Let G : B→ D be a lens that coforks F1 and
F2, let B ∈ |B|, let d ∈ D(GB,∗), and let C = EB. Then (G◦F1)

〈B,B〉d = F1
〈B,B〉GBd =

(
GBd,EBEGBd

)
,

and similarly (G◦F2)
〈B,B〉d =

(
EBEGBd,GBd

)
. As G coforks F1 and F2, we have GBd = EBEGBd. By

Theorem 4.5, E coequalises F1 and F2 in Lens.

Corollary 6.5. In Lens, the classes of all epis, regular epis, strong epis and extremal epis coincide.

Corollary 6.6. In Lens, the class of all morphisms that are left orthogonal to the class of all monos is
the class of all epis.

Proof. As Lens has equalisers [4], every morphism that is left orthogonal to the class of all monos is an
epi. Conversely, we have already shown that every epi is a strong epi.

Remark 6.7. As every lens factors as an epi followed by a mono (Remark 3.8), it follows that the class
of all epis and the class of all monos is an orthogonal factorisation system on Lens.
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