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Treewidth is a well-known graph invariant with multiple interesting applications in combinatorics. On the
practical side, many NP-complete problems are polynomial-time (sometimes even linear-time) solvable on graphs
of bounded treewidth [4, 5]. On the theoretical side, treewidth played an essential role in the proof of the celebrated
Robertson-Seymour graph minor theorem [10]. While defining treewidth-like invariants on graphs [3, 6, 9] and
treewidth analogues on other sorts of combinatorial objects (incl. hypergraphs, digraphs [7, 8]) has been a fruitful
avenue of research, a direct, categorial description capturing multiple treewidth-like invariants is yet to emerge.

Here we report on our recent work on spined categories [2]: categories equipped with extra structure that
permits the definition of a functorial analogue of treewidth, the triangulation functor. The usual notion of treewidth
is recovered as a special case, the triangulation functor of a spined category with graphs as objects and graph
monomorphisms as arrows. The usual notion of treewidth for hypergraphs arises as the triangulation functor of a
similar category of hypergraphs.

1 Spined Categories
Contrary to the usual convention in category-theoretic texts, we use the word graph to refer to simple graphs (ir-
reflexive, without loops or multiedges). We write Grph for the category that has graphs as objects and graph
homomorphisms as arrows, and Grphm for the category with the same objects, but monomorphisms as arrows.
Definition 1.1. A spined category consists of a category  equipped with the following additional structure:

• a sequence Ω ∶ ℕ→ ob called the spine of ,
• an operation P (called the proxy pushout) that assigns to each diagram of the form

G Ωn Hg ℎ in  a distinguished cocone G P(g,ℎ) H,
P(g,ℎ)g P(g,ℎ)ℎ

subject to the following two conditions:
SC1 For every X ∈ ob there is n ∈ ℕ such that (X,Ωn) ≠ ∅.
SC2 Given any diagram of the form G′ G Ωn H H ′g′ g ℎ ℎ′ we can find a unique mor-

phism (g′,ℎ′) ∶P(g,ℎ)→P(g′◦g,ℎ′◦ℎ) making the following diagram commute:

Ωn G G′

H P(g,ℎ)

H ′ P(g′◦g,ℎ′◦ℎ)

ℎ

g g′

P(g,ℎ)g

P(g′◦g,ℎ′◦ℎ)g′◦g

ℎ′
P(g,ℎ)ℎ (g′,ℎ′)

P(g′◦g,ℎ′◦ℎ)ℎ′◦ℎ

Proxy pushouts capture an important property that the left-cancellative subcategoryGrphm "remembers" about
the existence of pushouts in the category Grph: we can equip the former with proxy pushouts by assigning to each
diagram G Ωn Hg ℎ its pushout square in the latter. Moreover, a category  with all pushouts, when
equipped with a sequence Ω ∶ ℕ→ ob satisfying SC1, always forms a spined category.
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2 Treewidth via Spined Categories

Definition 1.2. Consider spined categories (,Ω ,P) and (,Ω,P). We call a functor F ∶  →  a spinal
functor if it
SF1 preserves the spine, i.e. F◦Ω = Ω, and
SF2 preserves proxy pushouts, i.e. given a proxy pushout square

Ωn G

H P(g,ℎ)

ℎ

g

P (g,ℎ)g

P (g,ℎ)ℎ

in the category , its F -image

Ωn F [G]

F [H] F [P(g,ℎ)]

Fℎ

Fg

FP (g,ℎ)g

FP (g,ℎ)ℎ

forms a proxy pushout square in . One can state this equationally, by demanding that the equalities
F [P(g,ℎ)] =P(Fg,Fℎ), FP(g,ℎ)g =P(Fg,Fℎ)Fg and FP(g,ℎ)ℎ =P(Fg,Fℎ)Fℎ all hold.

That is, a spinal functor between spined categories is a functor between the underlying categories that respects
the spine and proxy pushout structure. As expected, the composition of two spinal functors is itself spinal.

Regard the poset (ℕ,≤) of natural numbers under the usual ordering as a category. This category has all
pushouts. Equipping (ℕ,≤) with the spine Ωn = n and suprema as proxy pushouts yields a simple example of a
spined category, which we will denote Nat.
Definition 1.3. An S-functor on the spined category C is a spinal functor defined on C and valued in Nat.

Some spined categories do not have any S-functors defined on them: typically when some objectΩn can be con-structed as a proxy pushout using Ωi for i < n. The interested reader is welcome to enumerate necessary/sufficient
conditions for the existence of S-functors. In what follows, we side-step this issue by focusing our attention on the
class of spined categories which have at least one S-functor defined on them. We call such categories measurable.
Example 1.4. The category Grphm (with proxy pushouts inherited from pushouts in Grph, and spine Ωn the com-
plete1 graph on n vertices) is measurable: it’s easy to check that the map !(G) which sends each G to the size of
its largest complete subgraph, constitutes an S-functor.

2 Triangulation Functor
Our main result proves the existence of a distinguished S-functor, the triangulation functor on each measurable
spined category. Treewidth is recovered as the triangulation functor of the category Grphm, while hypergraph
treewidth is recovered as the triangulation functor of a corresponding category HGrphm. For traditional graph-
theoretic definitions of treewidth, we refer the reader to Encyclopedia of Algorithms [1]: our pseudo-chordal objects
play a similar role to that of chordal2 graphs in the second characterisation presented there.
Definition 2.1. We call an object X of a spined category  pseudo-chordal if all S-functors assign the same value
to X, i.e. for any two S-functors F ,G ∶  → Nat we have F [X] = G[X]. We let pc denote the class of pseudo-
chordal objects in the category .

In the category Grphm defined above, the class of pseudo-chordal objects forms a strict superset of the class of
chordal graphs: while all chordal graphs are in fact pseudo-chordal objects, the converse fails.

1A graph where every pair of distinct vertices is connected by an edge.
2A graph where all cycles of > 3 vertices have a chord, i.e. an edge connecting non-adjacent vertices of the cycle.
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Theorem 2.2 (Main result). Take a measurable spined category , equipped with some S-functor
s ∶  → Nat. The map Δ ∶  → Nat defined by the equation Δ[G] = min

{

s(H) |
|

H ∈ pcC,(G,H) ≠ ∅
}

1. is an S-functor;

2. dominates all other S-functors, i.e. for any X ∈ ob and S-functor F ∶  → Nat, F [X] ≤ Δ[X].

We call the functor Δ the triangulation functor of the category . It’s clear that every measurable category has
a unique triangulation functor.
Theorem 2.3. The triangulation functor of the category Grphm coincides with treewidth.

Spined categories socialize well via spinal functors: in the talk, we will explain how one can obtain measurabil-
ity (and non-measurability) results purely by constructing spinal functors, and present further examples, including a
category of hypergraphs where the triangulation functor recovers the notion of hypergraph treewidth. Some previ-
ously unknown tree-width-like invariants also emerge by collecting the relevant combinatorial objects into a spined
category. Somewhat surprisingly, by putting mild computability conditions on the category, we can even obtain
an algorithm which computes the value of the triangulation functor (although the generic algorithms obtained this
way are impractically slow for computing the treewidth of all but the simplest graphs).

Figure 1: A graph and one of its chordal completions (dashed). The treewidth of a graphG is the infimum
of the sizes of the largest complete subgraphs contained in the chordal completions of G.
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