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Abstract

We present a novel proof of de Finetti’s Theorem characterizing permutation-
invariant probability measures of infinite sequences of variables, so-called ex-
changeable measures. The proof is phrased in the language of Markov cat-
egories, which provide an abstract categorical framework for probability and
information flow. The diagrammatic and abstract nature of the arguments
makes the proof intuitive and easy to follow. We also show how the usual
measure-thereotic version of de Finetti’s Theorem for standard Borel spaces is
an instance of this result.
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1 Introduction
De Finetti’s Theorem states that every permutation-invariant joint probability dist-
tribution of countably many random variables is such that these variables are con-
ditionally independent given a suitable latent variable. Moreover, a canonical choice
of the latent variable is the empirical distribution of the variables under considera-
tion (which exists almost surely). In this paper, we state and prove a more abstract
version of de Finetti’s Theorem in the context of categorical probability theory, which
is a nascent framework for a foundation of probability and statistics that is more
abstract and more general than the traditional measure-theoretic approach.

Context of de Finetti’s Theorem. To provide some context for and illustrate
the significance of de Finetti’s Theorem, it is helpful to consider the notoriously divise
debate on the subjective vs. objective view on probability [22, 32]. For our purposes,
note that there are situations in which it is commonly presumed that one can give
objective meaning to probability and infer its value. For example, flipping a coin
and counting the relative frequency of ‘heads’ among the trials ought to converge to
the bias of the coin. This is the content of the law of large numbers.

However, there is no free lunch and the assumption that the objective probability
exists is crucial in the above reasoning. As de Finetti eloquently argues in Section 3
of [11], from the subjectivist point of view,

“nothing obliges us to choose [probability of heads in the next toss] to be
close to the frequency [of heads in the previously observed tosses].”

Let us give a brief account of the argument here and refer to de Finetti’s classic [11]
for more details.

In the coin-flipping experiment, suppose that we are given a (subjective) joint
probability distribution over possible sequences of heads and tails. We cannot justify
the trials to be independent without implicitly bringing in the assumption of objective
probability. Nevertheless, we may require that the joint distribution is unchanged
under permutations of the different trials, a property known as exchangeability1 which
expresses the belief that these are trials of the “same phenomenon”.

De Finetti shows that with respect to any exchangeable probability measure,
the individual trials are conditionally independent given some random variable Y .
Moreover, there is a canonical choice for Y whose values precisely correspond to
the possible biases of the coin, so that (in this example) Y takes values in the unit

1Exchangeable measures are occasionally also called “symmetric” or “equivalent”, see the trans-
lator’s note of [11].
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interval [0, 1]. De Finetti’s Theorem thus justifies the use of probability distributions
in the subjectivist conception, since it says that exchangeable behaviors (of infinitely
many trials) are indistinguishable from the behaviors of a repeated flipping of a coin
with unknown, but fixed, bias.

Indeed, one can easily see that flipping a coin with an unknown bias, distributed
according to some probability measure on Y , leads to a distribution of sequences of
heads and tails that is exchangeable. The non-trivial part of de Finetti’s Theorem is
in the converse. It says that, given a countable number of trials, every exchangeable
distribution arises in this way.

Historically speaking, the above context is the one in which the topic of our
paper—de Finetti’s Theorem—originates. However, besides its implications for the
foundations of the concept of probability, the result also bears significance for the
development of nonparametric Bayesian modelling [24, 31]. More concretely, many
natural stochastic processes—such as drawing with replacement (e.g. the Pólya urn
model and modifications thereof) or without replacement—give rise to exchangeable
distributions. By de Finetti’s Theorem, they can be equivalently described as draw-
ing a random probability distribution q according to a specified prior distribution
over distributions, µ (e.g. a Dirichlet process), and subsequently drawing indepen-
dent samples from q. In other words, they correspond to a mixture of iid (independent
and identically distributed) samplings, which is useful both as an aid for intuitive
understanding and for concrete calculations.

Existing proofs and variants of de Finetti’s Theorem. The original proofs
by de Finetti in the binary case (as in coin-flipping) can be found in [10, 11], while
a more general result is due to Hewitt and Savage [21], who have shown the analo-
gous statement for exchangeable Radon probability measures on compact Hausdorff
spaces. We give more details on the measure-theoretic formulation for standard
Borel spaces in Section 2. Since then, many proofs based on different methods have
appeared in various contexts. For instance, those of [26, Theorem 11.10] and [4,
Theorem 3.1] use the mean ergodic theorem and conditional expectations; in [29,
Theorem 12.17] and [3, Theorem 3.1] one arrives at the result via backwards martin-
gales; while harmonic [30] and non-standard [2] analysis have also been used. The
latter has recently led to a new generalization of de Finetti’s Theorem for exchange-
able Radon measures on any Hausdorff space [1]. Functional analysis and moment
methods have been utilized in the proof from [15, Chapter VII], whose more elemen-
tary and explicitly calculational version that applies to binary variables can be found
in [28].

Very recently, Jacobs and Staton [23] have presented a category-theoretic ap-
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proach to de Finetti’s Theorem, different from the present one, for the binary case.
Therein, the statement of de Finetti’s Theorem is encoded in the fact that the unit
interval—the space of probability distributions—arises as the categorical limit of a
sequence of multisets over {0, 1} (“urns”) related by morphisms that represent the
action of drawing a random element from an urn without replacement.

Our version of de Finetti’s Theorem. In Section 4, we present an abstract
version of de Finetti’s Theorem as a statement about morphisms in categories which
admit notions of parallel composition, copying, and discarding, called Markov cate-
gories [17]. The framework of Markov categories is very general, and there are many
Markov categories in which de Finetti’s Theorem does not hold. Correspondingly,
there are additional axioms that enter as ingredients in the proof of our abstract
version of de Finetti’s Theorem. Specifically, they correspond to the fact that one
should be able to

a construct conditional probabilities,
a describe distributions on spaces of probability distributions, and
a consider countable sequences of trials.

These three requirements will be stated formally in Assumption 4.2, after introduc-
ing the basics of the formalism of Markov categories in Section 3. Within a Markov
category that satisfies them, one therefore obtains a version of de Finetti’s Theorem.
As we show in Section 4, the measure-theoretic version for discrete and continuous
random variables (described by standard Borel spaces) arises in this way as well. Ad-
ditionally, we automatically get a characterization of exchangeable Markov kernels,
unlike the classical results that focus exclusively on exchangeable measures.

It is likely that other Markov categories also have the required properties, and
that instantiating the abstract de Finetti’s Theorem in those leads to a context in
which the result would be entirely new. However, we do not know of any such
examples at present and leave the search for these to future investigations.

Synthetic probability theory. The process described above—identifying abstract
results that follow from properties expressed within the framework and instantiat-
ing them in concrete Markov categories—is an example of the synthetic approach to
probability theory, which is distinguished from the standard analytic one in terms
of measure theory by encapsulating measure-theoretic statements in suitable higher-
level axioms [17]. It differs from standard approaches by using more formal and
abstract reasoning and it only depends on the particular measure-theoretic seman-
tics insofar as the synthetic axioms may or may not be satisfied. A number of
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concepts and theorems of classical probability and statistics have been given a syn-
thetic treatment in recent years [7, 17, 19, 18]. We recall the ones relevant for de
Finetti’s Theorem in Section 3.

The proof that we present in Section 5 is inspired by several of the concrete ones
mentioned above, but as far as we know it does not match either of them completely.
Its abstract nature, which places the focus on the essential aspects while allowing
us to ignore irrelevant details, arguably makes it easier to follow than any measure-
theoretic one, although it is still far from obvious. The proof relies on the graphical
calculus of string diagrams, which captures several non-trivial properties implicitly
and whose connectivity explicitly depicts information flow. It is these two features
that enable one to readily interpret any stage of the proof with relative ease, once
some familiarity with the diagrammatic notation has been obtained.

Outlook. Given the intuitive nature of our proof, it is natural to hope that even
deeper results can be proven along similar lines in a purely synthetic manner, and
that one can ultimately aim at proving new statements that would be too difficult to
obtain in the traditional measure-theoretic formalism due to its higher complexity.
With this in mind, it may be worth mentioning a few extensions of de Finetti’s
Theorem which one can try to aim at next.

Among the most interesting variations on the exchangeability theme is arguably
the notion of partial exchangeability [14], where the invariance under finite permu-
tation invariance is relaxed to invariance under certain structure-preserving permu-
tations. For example, the Aldous–Hoover Theorem [3, 4] characterizes exchangeable
arrays of random variables and is closely related to random graphs. There is a similar
result for Markov chains [12, 13, 6]. More recently, partial exchangeability has been
generalized to hierarchical exchangeability [5, 25]. The work of Crane and Towsner
provides perhaps the most general currently available results along these lines [8, 9],
situated in a model-theoretic framework.

Acknowledgments. Research for the second author is supported by NSERC Dis-
covery grant RGPIN 2017-04383, and by the Perimeter Institute for Theoretical
Physics. Research at Perimeter Institute is supported in part by the Government of
Canada through the Department of Innovation, Science and Economic Development
Canada and by the Province of Ontario through the Ministry of Colleges and Uni-
versities. Research for the third author is supported by the ERC grant “BLaST –
Better Language for Statistics”, and by the University of Oxford.
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2 Measure-Theoretic Version of de Finetti’s Theo-
rem

Let us turn to a more formal exposition of de Finetti’s Theorem in standard measure-
theoretic language. Given a measurable space X, consider the product XN of count-
ably many copies of X, equipped with the product σ-algebra. A bijection N → N
which fixes all elements apart from a finite subset is called a finite permutation.
Given a finite permutation σ : N → N, we denote by nσ ∈ N the largest natural
number not fixed by σ.

Consider a probability measure p on XN. By convention, given a finite collection
of measurable subsets S1, . . . , Sn ⊆ X, we write

p(S1 × · · · × Sn)

as shorthand for the probability of the “cylinder” event

p(S1 × · · · × Sn ×X ×X × . . .).

These probabilities specify the marginal distribution of p on the first n components
of XN. We say that the measure p is exchangeable if for every finite permutation σ
and for every finite sequence of measurable subsets S1, . . . , Snσ ⊆ X, we have

p(S1 × · · · × Snσ) = p
(
Sσ(1) × · · · × Sσ(nσ)

)
. (1)

As we saw in the introduction, a somewhat trivial example of exchangeable measures
is given by laws of iid random variables. They are the product measures satisfying

q(S1 × · · · × Sn) = q(S1)× · · · × q(Sn). (2)

Having introduced the notion of exchangeability, we now turn to de Finetti’s
Theorem itself. A convenient way to express the statement, which lends itself well
to category-theoretical translations, is to use the concept of measures on a space of
measures, as done by Hewitt and Savage [21, Section 2] among others. If X is a
standard Borel space, we denote by PX the set of probability measures on X. The
set PX can be equipped with a canonical σ-algebra, namely the one generated by
the functions εf : PX → R given by

p 7→
∫
f(x) p(dx)
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for all bounded measurable functions f : X → R. Measures on PX (thus elements
of PPX) can be thought of as random measures on X, where also the specific form
of the distribution is subject to uncertainty.2

Equivalently, measures on PX describe mixtures of measures—either in the sense
of finite convex combinations or integrals. Indeed, de Finetti’s Theorem can be sum-
marized as the fact that exchangeable measures are mixtures of product measures.
Here is the precise statement, in the version for standard Borel spaces.

Theorem 2.1 (de Finetti’s Theorem). Let X be a standard Borel space. S probability
measure p on XN is exchangeable if and only if there exists a probability measure µ
on PX such that for every finite collection of measurable subsets S1, . . . , Sn ⊆ X, we
have

p(S1 × · · · × Sn) =

∫
PX

q(S1)× · · · × q(Sn)µ(dq). (3)

For example, the iid case amounts to µ being the delta measure δq ∈ PPX. On
the other hand, if µ is a random measure supported on delta measures δx ∈ PX,
then we obtain p supported on the diagonal. That is, the associated exchangeable
random variables are perfectly correlated.

By convex analysis arguments, it can also be shown that given p as in Theo-
rem 2.1, the measure µ is uniquely determined. Note that the result due to Hewitt
and Savage [21] is more general than the one above, as it applies to Radon probability
measures on arbitrary compact Hausdorff spaces. It includes the uniqueness of µ as
well.

3 Markov Categories
We now take a detour from the discussion of de Finetti’s Theorem into the realm of
Markov categories. All of the concepts defined in this section have been introduced in
earlier works on categorical probability [7, 17, 19, 18]. Nevertheless, in the interest of
a self-contained presentation, we recall the main points here in a slightly less formal
way, referring to the existing literature for full technical detail.

As mentioned in the introduction, a Markov category is a category that comes
with notions of parallel composition, copying, and discarding. The idea is that
contexts in which one wants to model flow of information will generally satisfy these
basic requirements and thus correspond to a Markov category. In particular, one

2Such recursive ways of forming spaces can often be accurately captured by the categorical
notion of a monad, and indeed these spaces of measures can be described in terms of a well-known
monad, the Giry monad [20].
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would expect that any formalisation of classical probability theory does. However,
there are also many Markov categories that have nothing to do with probability
theory (see [17]).

One of the simplest interesting examples to keep in mind is FinStoch, the category
of finite sets and stochastic matrices. An object in FinStoch is a finite set, which
can be interpreted as the set of possible values of a random variable. A morphism,
say f : A → X, assigns a probability measure on the finite set X to each element
of the finite set A. It can thus be described as a stochastic matrix with entries
f(x|a) indexed by a ∈ A and x ∈ X. Parallel composition of two stochastic maps,
f : A → X and g : B → Y , is just their tensor product f ⊗ g : A ⊗ B → X ⊗ Y ,
where A ⊗ B is the cartesian product of the underlying sets and one multiplies
the probabilities in the formation of the tensor product. On the other hand, the
sequential composition of f : A → X and h : X → Z to produce h ◦ f : A → Z is
given by the usual matrix multiplication. In the context of stochastic maps, it is also
known as the Chapman-Kolmogorov equation.

In the string diagrammatic notation that we make heavy use of, objects are de-
picted as ‘wires’, while morphisms are generally drawn as ‘boxes’, with their domain
below and their codomain above the box depicted as incident wires. Parallel and
sequential composition is depicted by

f

X

A

g

Y

B

and
h

f

Z

A

respectively.
Copying and discarding in FinStoch are likewise as one would expect. Specifically,

copyX : X → X ⊗ X is a morphism that assigns, to each element x, the delta
distribution δ(x,x) of the pair (x, x) ∈ X ⊗ X. Discarding, delX : X → I, is the
stochastic map that corresponds to marginalization over X, where I denotes a fixed
single-element set. Thus to each element of X, the stochastic map delX assigns the
unique probability measure on I. Diagrammatically, we represent these maps as

X X

X

copyX

X

delX= =

where we implicitly make use of X ⊗ I ∼= X ∼= I ⊗X, so that I need not be drawn
explicitly.
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Abstracting these properties along with corresponding compatibility requirements
leads to the notion of Markov category. For a more detailed discussion of the defini-
tion and its formal aspects, we refer the reader to [17].

Definition 3.1 (Markov category [17, Definition 2.1]). A Markov category C is a
symmetric monoidal category where the monoidal unit object I is a terminal object,3
every object X ∈ C is equipped with distinguished morphisms copyX : X → X ⊗ X
and delX : X → I that make X into a commutative comonoid, and such that

X ⊗ Y

=

X ⊗ Y

X ⊗ Y

X Y X Y

X Y

(4)

holds for all X, Y ∈ C.

Example 3.2. As far as this paper is concerned, the most relevant example is that of
BorelStoch, which is the category of standard Borel spaces and measurable Markov
kernels. It extends the objects of FinStoch by including both countably infinite
measurable spaces as well as those isomorphic to [0, 1] with its Borel σ-algebra.
Morphisms coincide with those of FinStoch on finite sets, but in general they are
given by Markov kernels. That is, a morphism f : A→ X is specified by a family of
probability measures f( |a) over X, one for each a ∈ A, such that f(S| ) : A→ [0, 1]
is a measurable map for every measurable subset S ⊆ X. Sequential composition
of Markov kernels f : A→ X and h : X → Z is given by the Chapman-Kolmogorov
equation as usual, which in our notation reads

(h ◦ f)(T |a) =

∫
X

h(T |x) f(dx|a) (5)

for every a ∈ A and every measurable T ⊆ Z. For more details, see [17, Section 4].

3.1 Conditionals

In the introduction, we mentioned that one of the ingredients in our synthetic proof
of de Finetti’s Theorem is the existence of conditional probability distributions. Let
us make this more precise in the context of Markov categories. In FinStoch, given

3This means that for every object X in C there is a unique morphism X → I.
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a stochastic matrix f : A → X ⊗ Y with entries f(x, y|a), there is also a stochastic
matrix f|X(y|x, a) satisfying

f|X(y|x, a) =
f(x, y|a)∑
y′ f(x, y′|a)

(6)

whenever the denominator
∑

y′ f(x, y′|a) is non-zero, and taking arbitrary values
otherwise. This gives the corresponding probability of Y = y given that A and X
attain values a and x, respectively. Equation (6) can be viewed as a version of Bayes’
Theorem. One can also characterize f|X implicitly by

f(x, y|a) = f|X(y|x, a)
∑
y′

f(x, y′|a) (7)

which, unlike equation (6), can be expressed in string diagrams.

Definition 3.3 (conditionals [17, Definition 11.5]). Let f : A→ X⊗Y be a morphism
in a Markov category C. A morphism f|X : X ⊗ A→ Y in C is called a conditional
of f with respect to X if the equation

=f

X Y

A

f

f|X

YX

A

(8)

holds. We say that C has conditionals if such a conditional exists for all morphisms
f : A→ X ⊗ Y for any objects A,X, Y in C.

In BorelStoch, this amounts to the existence of regular conditional probabilities
for measurable Markov kernels [18, Example 2.4].

As a special case of conditionals, we obtain a synthetic definition of a Bayesian
inverse of f : A→ X with respect to a prior m : I → A.

Definition 3.4 (Bayesian inverse [7]). Given morphisms m : I → A and f : A→ X,
a Bayesian inverse of f with respect to m is a conditional of

m

f

XA

(9)
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with respect to X. Explicitly, it is a morphism f † : X → A satisfying

m

f

XA

=

m

f †

f

XA

(10)

For example in FinStoch, such a Bayesian inverse f † : X → A satisfies

f †(a|x)
∑
a′

f(x|a′)m(a′) = f(x|a)m(a) (11)

In general, one should keep in mind that even though we denote a Bayesian inverse
of f by f †, it does depend non-trivially on the prior m. Moreover, conditionals and
Bayesian inverses are generally not unique when they exist. In FinStoch, this is
because f|X(y|x, a) is arbitrary whenever

∑
y f(x, y|a) = 0 in equation (7). However,

one can show that conditionals (and therefore also Bayesian inverses) are unique up
to almost sure equality [17, Proposition 13.6].

Definition 3.5 (a.s.-equality [7]). Given m : Θ → A, we say that f, g : A→ X are
m-almost surely equal, denoted by f =m-a.s. g, if we have

f

XA

=

m

Θ

g

XA

m

Θ

(12)

We can interpret equation (12) as saying that f and g can only differ for events
that are deemed irrelevant by m. For example, in BorelStoch, f and g are m-a.s.
equal if and only if they are equal with probability 1 for every value of Θ, i.e. if and
only if ∫

S

f(T |a)m(da|θ) =

∫
S

g(T |a)m(da|θ) (13)

holds for all θ ∈ Θ and for all measurable subsets S of A and T of X respectively.
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3.2 Representability

Second on our list of proof ingredients is the ability to express a space of distributions
on an object in a Markov category C as an object in C itself. For example, given an
object X = {0, 1} in BorelStoch, we would like there be an object PX isomorphic
to [0, 1] whose elements are themselves probability distributions over X. Indeed,
BorelStoch allows for such a construction [18, Example 3.19]. However, this is not
the case for FinStoch of course since PX cannot be a finite set.

Before stating the general definition of PX more formally, we need to address
the question of how to refer to “elements” of an object in a Markov category. After
all, the objects do not come equipped with any underlying set a priori. In FinStoch,
we can identify the finite set X with those morphisms I → X that are delta distri-
butions. That is, they are morphisms describing no randomness—the deterministic
ones. More generally, deterministic morphisms in FinStoch are the {0, 1}-valued
stochastic matrices. Intuitively, a deterministic f can be characterized by the fact
that applying it to two independent copies of its input is guaranteed to result in
the same pair of output values as applying f directly to the input and copying its
output.

Definition 3.6 (deterministic morphism [17, Definition 10.1]). Let f : A→ X be a
morphism in C. We say that f is deterministic if it satisfies:

f f
=

f

X X X X

A A

(14)

The subcategory of C that consists of its deterministic morphisms is denoted by Cdet.

Indeed, condition (14) fails for every stochastic matrix that is not {0, 1}-valued.
Besides deterministic morphisms, we will also make use of the concept of m-almost
surely deterministic ones.

Definition 3.7 (a.s.-deterministic morphism [17, Definition 13.11]). A morphism f
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in C is m-almost surely deterministic if it satisfies:

f f

=
f

X X X XA

m

Θ

A

m

Θ

(15)

Given Definition 3.6, we thus identify “elements” of the hypothetical space of
distributions PX with deterministic morphisms I → PX. In order for these to
faithfully represent probability distributions on X (and nothing else), in the general
categorical setting we therefore require there to be a bijection between C(I,X) and
Cdet(I, PX). Extending this requirement to morphisms with arbitrary domain A,
which is expected to hold by the same reasoning, leads to the definition of distribution
objects.

Definition 3.8 (representable Markov category [18, Definition 3.7]). Given an object
X in a Markov category C, a distribution object for X is an object PX together with
natural bijections4

C(A,X) ∼= Cdet(A,PX) (16)
between morphisms into X and deterministic morphisms into PX. Given any mor-
phism f : A → X, we denote by f ] : A → PX its counterpart under this bijective
correspondence. We say that C is representable if every object of C has a distribu-
tion object.

It turns out that a slightly stronger version of representability is needed in the
synthetic proof of de Finetti’s Theorem. In particular, we require that the identifi-
cation from (16) is compatible with a.s.-equality in the following sense.

Definition 3.9 (a.s.-compatible representability [18, Definition 3.18]). A repre-
sentable Markov category C is called a.s.-compatibly representable if we have

f

X

A

g

X

A

⇐⇒ f ]

PX

A

=m-a.s. g]

PX

A

=m-a.s. (17)

for all m : Θ→ A and all f, g as indicated.
4The bijections being natural refers to the property that the functions instantiating them for

different choices of A make up the components of a natural isomorphism.
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For example, BorelStoch is a.s.-compatibly representable [18, Example 3.19].
If we set A = PX in bijection (16), we get a correspondence between deterministic

morphisms PX → PX and generic morphisms PX → X. The identity on PX
corresponds to a map PX → X which we denote by samp, and which we can think
of as taking a probability distribution p on X and returning a random element of X
distributed according to p (hence, “sampling” from p). In BorelStoch, for instance,
for every p ∈ PX and every measurable S ⊆ X we have

samp(S|p) = p(S). (18)

3.3 Infinite Products

The third and last ingredient that we need in the proof of our synthetic de Finetti’s
Theorem is the ability to construct countable products of objects. Once again we
would not expect FinStoch to allow those, since its objects are merely finite sets,
but BorelStoch does [19, Example 3.6]. The relevant definition is that of Kolmogorov
products introduced in [19] in the context of 0/1-laws for Markov categories.

Given a hypothetical object XN describing the product of countably many X,
every probability measure f : I → XN should give rise to a corresponding measure
fF : I → XF for each finite subset F ⊆ N. Intuitively, fF is given by marginalizing
over those copies of X indexed by the set complement of F . Therefore, we might
expect there to be a corresponding deterministic morphism πF : XN → XF , which
gives fF when composed with f . Conversely, Kolmogorov extension theorem suggests
that one can reconstruct f uniquely from its family of finite marginals (fF ), provided
that these are suitably compatible. That is to say, if F ′ ⊆ F is a further subset, then
one can obtain fF ′ from fF by marginalizing over the extraneous copies of X. Under
this condition, there should be a unique f such that fF = πF ◦ f for all F .

The idea underlying Kolmogorov products is to turn these properties that one
would expect from a countable product into a definition of a meaningful product of
infinitely many objects in any Markov category. However, besides merely morphisms
of type I → XN, we also require similar properties of those with a non-trivial domain
A and an additional codomain Y that could be correlated with XN.

Definition 3.10 (Kolmogorov powers [19, Definition 4.1]). Given an object X in a
Markov category C, consider an object XN of C such that there is a natural bijection
between

a morphisms f in C(A,XN ⊗ Y ) and
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a families (fF : A→ XF ⊗Y ) of morphisms indexed by finite subsets F of N that
are compatible in the sense that whenever F ′ is a subset of F , we have

=fF ′
fF

XF ′ Y

A

πF,F ′

XF ′ Y

A

(19)

where πF,F ′ : XF → XF ′ acts as the identity on XF ′ and applies delX to each
of the remaining factors,

for all objects A and Y of C. If the family of morphisms corresponding to the iden-
tity on XN consists of deterministic morphisms, then XN is termed countable Kol-
mogorov power of X.

For example, Kolmogorov’s extension theorem (in the countable case) states that
countable Kolmogorov powers exist in BorelStoch [19, Example 3.6].

Note that the family of morphisms that corresponds to id : XN → XN under the
prescribed bijection is given by the “infinite marginalization maps” πF : XN → XF

mentioned before, which play the role of product projections.
Although the original definition in [19] defines Kolmogorov products of any arbi-

trarily large family of objects, in the present context we limit ourselves to countable
powers of one and the same object, since this is all we need for de Finetti’s Theorem.

4 De Finetti’s Theorem for Markov Categories
Suppose that a Markov category C has countable Kolmogorov powers. We can then
express what it means for a morphism with a countable power XN as codomain to
be exchangeable. Note that for any injective function i : N → N (and in particular
for any permutation) we can define a morphism X i : XN → XN that maps the n-th
component in XN to

a the i−1(n)-th component of XN whenever n is in the image of i, and
a discards it otherwise.

The construction of X i is by the definition of XN as the Kolmogorov power of X.
That is, X i corresponds to the family of morphisms (X i

F : XN → XF ) as in Defini-
tion 3.10, where X i

F is the composite of the product projection πi(F ) : XN → X i(F )

with the canonical isomorphism X i(F ) ∼= XF resulting from identifying the factors
as prescribed by i.
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Definition 4.1 (exchangeability). A morphism p : A→ XN is said to be exchange-
able if it is invariant under finite permutations of the components of the Kolmogorov
power XN. That is, we demand that for every finite permutation σ : N→ N, we have

=p
p

Xσ

(20)

Assumption 4.2. Unless stated otherwise, throughout the rest of this paper we as-
sume that C is a Markov category that:

1. has conditionals,
2. is a.s.-compatibly representable, and
3. has countable Kolmogorov powers.

Example 4.3. BorelStoch satisfies these assumptions. The relevant arguments can
be found in [27, Theorem 1.25], [18, Example 3.19], and [19, Example 3.6] respec-
tively.

Theorem 4.4 (synthetic de Finetti’s Theorem). Let C be a Markov category satisfy-
ing Assumption 4.2. Then a morphism p : A→ XN in C is exchangeable if and only
if there is a morphism µ : A→ PX such that we have

sampsamp · · ·

µ

p =

· · ·

(21)

In particular, this result says that the outputs of p are conditionally indepen-
dent and identically distributed. As we will see in the proof, the conditioning here
is with respect to a synthetic version of the tail σ-algebra, thereby reproducing
this classical aspect of de Finetti’s Theorem as well. In fact, the proof uses an
abstract version of the well-known result of measure-theoretic probability that the
exchangeable σ-algebra and the tail σ-algebra coincide up to sets of measure zero [29,
Corollary 12.18]. In the following synthetic version of this result, the role of these
σ-algebras is played by all possible ways of “probing” joint distributions of XN by
composing with a deterministic (or almost surely deterministic) morphism f .

Proposition 4.5. Let C be a Markov category with conditionals and countable Kol-
mogorov powers. Let p : A → XN be exchangeable, and suppose that f : XN → Y is
p-a.s. deterministic. Then the following are equivalent:

16



1. Finite permutation invariance: For every finite permutation σ, we have

f =p-a.s. f ◦Xσ. (22)

2. Shift invariance: For the successor function s : N→ N mapping n to n+ 1, we
have

f =p-a.s. f ◦Xs. (23)

The successor function can be equivalently the inclusion of the second component
in the coproduct decomposition N ∼= 1+N and we depict its action on the Kolmogorov
power XN by either of the two following string diagrams:

=Xs

This morphism effectively discards the first component of XN.

Remark 4.6. While Theorem 4.4 captures the key part of de Finetti’s Theorem
characterizing exchangeable morphisms, we have not been able to prove that our
assumptions imply the uniqueness of the “de Finetti measure” µ in equation (21).
This property is often proven as part of classical versions of de Finetti’s Theorem
including the one of Hewitt and Savage for compact Hausdorff spaces [21].

Here is how we can use Theorem 4.4 to obtain the classical de Finetti’s Theorem
in the form of Theorem 2.1. First of all, we take as C the category BorelStoch, which
satisfies the relevant assumptions. Moreover, since the usual statement is given
for the case of probability measures as opposed to Markov kernels with nontrivial
domain, it suffices to consider the case of A = I.

Then the left-hand side of equation (21) instantiated in our case is an exchange-
able probability measure on XN in the sense of Section 2. Theorem 4.4 says that
there exists a Markov kernel µ : I → PX (equivalently, a probability measure on
PX) such that p can be written as in the right-hand side of equation (21). Evaluat-
ing this equation on a cylinder set corresponding to a sequence of measurable subsets
S1, . . . , Sn of X gives

p(S1 × · · · × Sn) =

∫
PX

(
n∏
i=1

∫
PX

samp(Si|qi)

)
copy(dq1 ⊗ · · · ⊗ dqn|q)µ(dq)

=

∫
PX

n∏
i=1

samp(Si|q)µ(dq)

=

∫
PX

q(S1)× · · · × q(Sn)µ(dq),

17



where we used the fact that samp(S|q) = q(S). Thus, Theorem 2.1 follows from
Theorem 4.4.

Similarly, here is how Proposition 4.5 recovers the classical coincidence of ex-
changeable σ-algebra and tail σ-algebra up to null sets. In BorelStoch, a determin-
istic morphism f : XN → {0, 1} corresponds to an event in XN, and such f satisfies
the shift invariance condition if and only if the corresponding event is, up to null
sets, in the tail σ-algebra. Likewise, such f satisfies finite permutation invariance if
and only if the event is, up to null sets, in the exchangeable σ-algebra.

Remark 4.7. Note that by making the same argument with A an arbitrary standard
Borel space, one obtains a parametric version of the classical Theorem 2.1. It says
that if the exchangeable probability measure p depends measurably on a parameter,
then µ can also be chosen to depend measurably on the same parameter.

Remark 4.8. It is conceivable that versions of de Finetti’s Theorem applying to
larger classes of spaces, such as the result of Hewitt and Savage for exchangeable
Radon probability measures on compact Hausdorff spaces, can also be obtained from
Theorem 4.4 by instantiating it in a suitable Markov category. The recent results of
Forré [16] may be relevant here to establish the existence of conditionals.

5 Diagrammatic Proof of de Finetti’s Theorem
The overall structure of the proof is presented in Figure 1. We first present a number
of lemmas that may be useful in other contexts too. We assume throughout that we
are in a Markov category C satisfying Assumption 4.2.

Lemma 5.1 (spreadability). Let p : A → Y ⊗ XN be exchangeable in the second
factor. Then for every injective function i : N→ N, we also have

p

X i

p
= (24)

In the concrete setting of BorelStoch, this statement reads as follows in the case
A = Y = I. Consider a probability measure p ∈ P (XN) specifying an exchangeable
joint distribution of infinitely many random variables. If we marginalize over the
first component, then the resulting distribution is again p. In other words, if p is ex-
changeable, then it is also shift-invariant. More generally, even if we can marginalize
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Lemma 5.1
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Lemma 5.2
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Proposition 4.5
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Theorem for
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[18, Section 2.2]

De Finetti’s
Theorem

(Theorem 4.4)

Figure 1: Overall structure of the proof of Theorem 4.4.
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over any number of components whose indices are specified by the image of some
injective function i : N→ N, the resulting distribution is still p. The same logic can
be applied in the presence of a non-trivial covariate Y and parameter A, i.e. when p
is a Markov kernel A→ Y ⊗XN.

The relevant argument was essentially already given in the proof of [19, Section 5],
but we reproduce the argument here in the present more general context. Note that
this works the same way for any other infinite set in place of N (if the relevant
Kolmogorov power exists).

Proof. SinceXN is the Kolmogorov power ofX, it suffices to prove equation (24) after
composition with each of the infinite marginalization maps πF : XN → XF where F
is a finite subset of N as before. That is, we need to prove

p

X i

p

=

πF
πF

(25)

for each finite F ⊆ N. For any given i and F , we can find a finite permutation
σ : N→ N whose action on F coincides with that of i. By definitions of Xσ and X i,
this implies πF ◦ Xσ = πF ◦ X i, and the claim now follows by the assumed finite
permutation invariance.

The next lemma can be thought of as a synthetic statement about stochastic
dynamical systems where t : Θ → Θ is the dynamics, p is an invariant probability
measure, and f is an observable.

Lemma 5.2 (dynamically invariant observables). Let p : I → Θ and t : Θ → Θ be
two morphisms satisfying t p = p. If t† denotes a Bayesian inverse of t with respect
to p, then every p-a.s. deterministic f : Θ→ X satisfies

f

t†
f

f

t
f=p-a.s. =p-a.s.=⇒ (26)

Before presenting the proof, let us again instantiate this for the concrete case
of BorelStoch, and in particular for X = R. Consider a standard Borel probability

20



space (Θ, p) and a measure-preserving Markov kernel t : Θ→ Θ. A Bayesian inverse
of t is regular conditional kernel t† satisfying∫

S

t(T |θ) p(dθ) =

∫
T

t†(S|θ) p(dθ) (27)

for all measurable subsets S, T ⊆ Θ. Lemma 5.2 says that if a (deterministic)
function f : Θ→ R satisfies

f(θ) =

∫
Θ

f(θ′) t†(dθ′|θ), (28)

for p-almost every θ, then it also satisfies

f(θ) =

∫
Θ

f(θ′) t(dθ′|θ). (29)

for p-almost every θ. By Lemma 5.2, if f is an observable invariant under the time-
reversed dynamics, then it is also preserved forward in time. One may therefore
expect this result to have further relevance for a synthetic treatment of ergodic
theory.

Proof. Using the definition of Bayesian inverses, the assumed t p = p, and the an-
tecedent statement in implication (26), we get

f

t

p

f

=

f

p

f

t†

t

=

f

p

f

(30)

The claim now follows by [19, Lemma 5.5] whose proof, even if originally stated for
deterministic f only, works just as well for p-a.s. deterministic f .

Getting to the proof of Proposition 4.5, it is worth noting that neither Lemma 5.1
nor Lemma 5.2 use the assumption of representability of C. As expressed in the
statement of Proposition 4.5, the following proof does not require representability
either, even while making use of the previous two lemmas.
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Proof of Proposition 4.5. Let us argue that shift invariance as expressed by equation
(23) implies finite permutation invariance as expressed by equation (22). Indeed, for
any finite permutation σ : N → N, there is an integer nσ beyond which all larger
integers are fixed by σ. With s : N→ N denoting the successor function introduced
in the statement of Proposition 4.5, this entails σ ◦ snσ = snσ . Therefore, we have

(Xs)nσ ◦Xσ = (Xs)nσ , (31)

where the morphism on the right-hand side effectively discards the first nσ compo-
nents of XN. Thus, assuming shift invariance of f , we can infer the permutation
invariance as follows:

= =

f
f Xσ−1

Xσ

p p

=

f

(Xs)nσ

p

Xσ−1

=

f

p

f

(Xs)nσ

p

(32)

In particular, the first equality holds by exchangeability of p, the second and fourth
ones correspond to shift invariance of f applied nσ times, and the third follows from
equation (31) (as well as exchangeability of p once again).

Conversely, let us now assume finite permutation invariance of f and show that
it implies shift invariance. By the first equality of (32), we have that the morphism

p

f
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is exchangeable in the second output. Therefore, by Lemma 5.1, we also obtain

p

f

=

Xs

p

f

=

p

f

(Xs)† (33)

By Lemma 5.2, this entails

f =p-a.s.
f

Xs

(34)

which is what we wanted to prove.

For a given exchangeable morphism p : I → XN, we now consider a conditional
p|tail : X

N → X of the first output given all others, which means that it satisfies the
left equation in

=

p|tail

=

p|tail

p
p

p
(35)

while the right one follows by exchangeability of p and Lemma 5.1.
Such a tail conditional depends only on the tail of the product XN in the following

sense.

Lemma 5.3 (shift invariance of the tail conditional). If p : I → XN is exchangeable,
then we have

p|tail =p-a.s.
p|tail

(36)
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Here is what the statement looks like in BorelStoch. Let p be an exchangeable
probability measure on XN, and let p|tail be a regular conditional of the first compo-
nent given the other ones. Denote a generic element of XN by (x1, x2, . . . ). Then for
each measurable subset S ⊆ X, we have that

p|tail(S|x1, x2, . . . ) = p|tail(S|x2, x3, . . . ) (37)

holds for p-almost all sequences (x1, x2, . . . ) ∈ XN. Iterating this equation shows
that p|tail only depends on the tail.

Proof. By the definition of p|tail and exchangeability of p, we have

= =

p|tail
p|tail p|tail Xσ−1

Xσ

p
p p

(38)

for any finite permutation σ : N → N. By the a.s.-compatible representability of C
(Definition 3.9), this is equivalent to(

p|tail ◦Xσ
)]

=p-a.s. p
]
|tail. (39)

Since Xσ is deterministic, we have(
p|tail ◦Xσ

)]
= p]|tail ◦X

σ, (40)

and conclude that the deterministic morphism p]|tail is p-almost surely finite permu-
tation invariant. Thus, by Proposition 4.5, it is also shift invariant. This proves the
claim after composition with the sampling map sampX .

Lemma 5.4 (exchangeable states are conditionally iid). If p : I → XN is an ex-
changeable morphism, then we have

=p

p

p|tail p|tail· · · (41)
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Concretely, in BorelStoch, Lemma 5.4 says the following. Let p be an exchangeable
probability measure on XN. Then for every cylinder defined by measurable subsets
S1, . . . , SN ⊆ X, we have

p(S1 × · · · × Sn) =

∫
XN
p|tail(S1|ξ)× · · · × p|tail(Sn|ξ) p(dξ). (42)

where ξ is shorthand for a generic sequence (x1, x2, . . . ) ∈ XN.

Proof. By the universal property of the Kolmogorov power XN, it is enough to prove

p
=

p

· · ·p|tail p|tail

n wires

(43)

for every n ∈ N. Using induction, the base case n = 0 is trivial. In order to get from
n to n+ 1, we use

p

···p|tail p|tail

=

p

···
p|tail p|tail

Xs Xs

p

···p|tail p|tail

=

= =

p

···p|tail p|tail

p

···p|tail p|tail

p|tail

n wires n wires n wires

n wires n+ 1 wires

where the first step is by Lemma 5.3 and the third one by equation (35).
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Parametrization construction. Lemma 5.4 allows us to prove de Finetti’s The-
orem for exchangeable morphisms out of I, but our Theorem 4.4 is meant to be ap-
plicable to exchangeable morphisms with an arbitrary domain A. In order to make
this logical transition, we interpret the statement of Lemma 5.4 in a new Markov
category CA where every morphism f : A → Y of C can be reinterpreted as a mor-
phism f : I → Y in CA. Specifically, we use the parametric Markov category CA [18,
Section 2.2], which is defined in terms of C and A by taking its objects to coincide
with those of C and its morphisms to be

CA(B, Y ) := C(A⊗B, Y ). (44)

In a sense, CA contains the same data as C; it is just organized differently. When
composing morphisms in CA we use the composition of C and distribute a copy of A
to each of the morphisms in the composition. The key aspect of the parametrization
construction for our proof is that as long as C satisfies Assumption 4.2, so does the
parametric category CA. The arguments for conditionals and a.s.-compatible repre-
sentability have been presented in [18] as Lemma 2.10 and Lemma 3.22 respectively.
Here, we also spell out the argument for Kolmogorov powers.

Lemma 5.5. If XN is a countable Kolmogorov power of X in C, then XN is also a
countable Kolmogorov power of X in the parametric Markov category CA.

Proof. Let B, Y be arbitrary objects of CA. We have the following three bijective
correspondences

f ∈ CA(B,XN ⊗ Y ) f ∈ C(A⊗B,XN ⊗ Y )

(
fF ∈ CA(B,XF ⊗ Y )

) (
fF ∈ C(A⊗B,XF ⊗ Y )

)
where the lower two are compatible families in the same sense as in Definition 3.10.
The vertical one is natural in both B and X by assumption, while for the horizontal
ones, naturality follows from the definition of CA.

Since identities in CA correspond to identities in C with A discarded, the infinite
marginalization maps in CA are likewise given by discarding A and applying the
respective πF ∈ C(XN, XF ). In particular, the infinite marginalization maps in CA
are deterministic, which means that the countable Kolmogorov power of X in CA
indeed exists and is given by XN.
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Proof of Theorem 4.4. We first consider the case A = I. Then we get

=p

p

p]|tail p]|tail

· · ·
samp samp

=

p

· · ·samp samp

p]|tail

(45)

as a consequence Lemma 5.4. This already has the desired form of equation (21).
Now, for a general morphism p : A→ XN, we apply this result to the parametric

Markov category CA, in which p is represented by a morphism with domain I. By [18,
Lemmas 2.10 and 3.22] and Lemma 5.5, CA satisfies our three assumptions provided
that C itself does. As is mentioned in [18, Example 3.17], the sampling map in CA is
represented by delA⊗ samp in C. Therefore, instantiating equation (45) in CA gives

=

· · ·samp samp

p]|tail
p

p
A

XN

(46)

in C, which is the relevant form for what we wanted to show.
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