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Functorial Manifold Learning

Dan Shiebler

We adapt previous research on category theory and topological unsupervised learning to develop a
functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We
first characterize manifold learning algorithms as functors that map pseudometric spaces to optimiza-
tion objectives and that factor through hierarchical clustering functors. We then use this character-
ization to prove refinement bounds on manifold learning loss functions and construct a hierarchy
of manifold learning algorithms based on their equivariants. We express several popular manifold
learning algorithms as functors at different levels of this hierarchy, including Metric Multidimen-
sional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a
broad class of manifold learning algorithms. We present bounds on how closely the embeddings
these algorithms produce from noisy data approximate the embeddings they would learn from noise-
less data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which
we experimentally demonstrate are competitive with the state of the art.

1 Introduction

Suppose we have a finite pseudometric space (X,dX) that we assume has been sampled from some larger
space X according to some probability measure µX over X. Manifold Learning algorithms like Isomap
[22], Metric Multidimensional Scaling [1], and UMAP [18] construct Rm-embeddings for the points in
X, which we interpret as coordinates for the support of µX. These techniques are based on the assumption
that this support can be well-approximated with a manifold. In this paper we use functoriality, a basic
concept from Category Theory, to explore two aspects of manifold learning algorithms:

• Equivariance: A manifold learning algorithm is equivariant to a transformation if applying that
transformation to its inputs results in an corresponding transformation of its outputs. Understand-
ing the equivariance of a transform lets us understand how it will behave on new types of data.

• Stability: The stability of a manifold learning algorithm captures how well the embeddings it
generates on noisy data approximate the embeddings it would generate on noiseless data. Under-
standing the stability of a transform helps us predict its performance on real-world applications.

1.1 Functoriality

In order for a manifold learning algorithm to be useful, the properties of the embeddings that the algo-
rithm derives from (X,dX) must be somewhat in line with the structure of (X,dX). One way to formalize
this is to cast the algorithm as a functor between categories. A category is a collection of objects and
morphisms between them. Morphisms are closed under an associative composition operation, and each
object is equipped with an identity morphism. An example category is the collection of sets (objects)
and functions (morphisms) between them.

A functor is a mapping between categories that preserves identity morphisms and morphism com-
position. Underlying this straightforward definition is a powerful concept: the functoriality of a trans-
formation is a blueprint for its structure, expressed in terms of the equivariants it preserves. If a given
transformation is functorial over some pair of categories, then the transformation preserves the structure
represented in those categories’ morphisms. By identifying the settings under which an algorithm is
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functorial, we can derive extensions of the algorithm that preserve functoriality and identify modifica-
tions that break it. See “Basic Category Theory” [17] or “Seven Sketches in Compositionality” [13] for
more details on categories and functoriality.

1.2 Summary of Contributions

In Section 2, we demonstrate that manifold learning algorithms can be expressed as optimization prob-
lems defined on top of hierarchical overlapping clusterings. That is, we can express these algorithms in
terms of the composition of:

• a strategy for clustering points at different distance scales

• an order-preserving transformation from a clustering of points to a loss function

We formalize this relationship in terms of the composition of functors between categories of pseudomet-
ric spaces, hierarchical overlapping clusterings, and optimization problems. This allows us to formally
extend clustering theory into manifold learning theory.

In Section 2.1 we build on clustering theory to demonstrate that every manifold learning objective
lies on a spectrum based on the criterion by which embeddings are penalized for being too close together
or too far apart. In Section 2.2 we introduce a hierarchy of manifold learning algorithms and categorize
algorithms based on the dataset transformations over which they are equivariant. In Section 2.3 we
provide several examples of this categorization. We show that UMAP is equivariant to isometries and
both IsoMap and Metric Multidimensional Scaling are equivariant to surjective non-expansive maps.
Identifying these equivariants is helpful for identifying the circumstances under which we would expect
our algorithms to generalize. For example, while adding points to a dataset will modify the IsoMap
objective in a predictable way, this will completely disrupt the UMAP objective. This is caused by the
fact that UMAP uses a local distance rescaling procedure that is density-sensitive, and is therefore not
equivariant to injective or surjective non-expansive maps.

In Section 3 we use interleaving distance to study the stability of a broad class of manifold learning
algorithms. We present novel bounds on how well the embeddings that algorithms in this class learn on
noisy data approximate the embeddings they learn on noiseless data.

In Section 4 we build on this theory to describe a strategy for deriving novel algorithms from existing
manifold learning algorithms. As an example we derive the Single Linkage Scaling algorithm, which
projects samples in the same connected component of the Rips complex as close together as possible.
We also present experimental results demonstrating the efficacy of this algorithm.

1.3 Related Work

Several authors have explored functorial perspectives on clustering algorithms. Carlsson et al. [8] intro-
duce clustering functors that map metric spaces to partitionings, whereas Culbertson et al. [11] take a
slightly broader scope and also explore overlapping clustering functors that map metric spaces to cover-
ings. Both approaches demonstrate that metric space categories with fewer morphisms permit a richer
class of clustering functors. For example, while the single linkage clustering algorithm is functorial
over the full category of metric spaces and non-expansive maps, density-sensitive clustering algorithms
like robust single linkage are only functorial over the subcategory of metric spaces and injective non-
expansive maps. In order to get around the Kleinberg Impossibility Theorem [16], which states that any
scale invariant flat clustering must sacrifice either surjectivity or a notion of consistency, several authors
[8, 12, 19] also explore hierarchical clustering functors that map metric spaces to multi-scale dataset
partitionings or covers. Shiebler [20] builds on this perspective to factor clustering functors through a
category of simplicial complexes.
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Manifold learning shares structure with hierarchical clustering, and some authors have begun ap-
plying categorical ideas to manifold learning. For example, McInnes et al. [18] introduce the UMAP
manifold learning algorithm in terms of Spivak’s fuzzy simplicial sets [21], which are a categorical ana-
log of simplicial filtrations.

In Section 3 we study the stability of manifold learning algorithms to dataset noise. Due to the
importance of this topic, many other authors have researched the stability properties of manifold learning
algorithms. For example, Baily [3] explore adaptations of PCA to noisy data, and Gerber et al. [15]
demonstrate that Laplacian Eigenmaps has nicer stability properties than IsoMap. However, we believe
that ours is the first work that uses interleaving distance to formalize a stability property.

1.4 Preliminaries on Functorial Hierarchical Overlapping Clustering

We briefly review some definitions from the functorial perspective on hierarchical overlapping clustering.
For more details, see Shiebler [20]. Given a set X, a non-nested flag cover CX of X is a cover of X such
that: (1) if A,B ∈ CX and A ⊆ B, then A = B, (2) the simplicial complex with vertices corresponding to the
elements of X and faces all finite subsets of the sets in CX is a flag complex, or a simplicial complex that
can be expressed as the clique of its 1-skeleton. The category Cov has tuples (X,CX) as objects where CX

is a non-nested flag cover of the finite set X. The morphisms between (X,CX) and (Y,CY ) are functions
f : X→ Y where for any set S in CX there exists some set S ′ in CY such that f (S ) ⊆ S ′.

Next, we will represent datasets with the category PMet of finite pseudometric spaces and non-
expansive maps between them. Given a subcategory D of PMet, a flat D-clustering functor is a functor
C : D→ Cov that is the identity on the underlying set. Intuitively, a flat D-clustering functor maps a
dataset (X,dX) to a cover of the set X in a way such that increasing the distances between points in X may
cause clusters to separate.

A fuzzy non-nested flag cover is a functor FX : (0,1]op → Cov such that for any morphism a ≤ a′

in (0,1], the morphism FX(a ≤ a′) is the identity on the underlying set. In the category FCov objects are
fuzzy non-nested covers and morphisms are natural transformations between them. Given a subcategory
D of PMet a hierarchical D-clustering functor is a functor H : D→ FCov such that for a ∈ (0,1],
H(−)(a) : PMet → Cov is a flat D-clustering functor. Intuitively, a hierarchical D-clustering functor
maps a pair of a dataset (X,dX) and a strength a ∈ (0,1] to a cover of the set X in a way such that
increasing the distances between points in X or increasing the strength a may cause clusters to separate.

2 Manifold Learning

A manifold learning algorithm constructs an n×m real valued matrix of embeddings in Matn,m = Rn×m

from a finite pseudometric space with n points. In this work we focus on algorithms that operate by
solving embedding optimization problems, or tuples (n,m, l) where l : Matn,m → R is a loss func-
tion. We call the set of all A ∈Matn,m that minimize l(A) the solution set of the embedding optimiza-
tion problem. In particular, we focus on pairwise embedding optimization problems, or embedding
optimization problems where l can be expressed as a sum of pairwise terms li j : R≥0 → R such that
l(A) =

∑
i∈1...n
j∈1...n

li j(‖Ai−A j‖). We express such a pairwise embedding optimization problem with the tuple

(n,m, {li j}).
Formally we define a manifold learning problem to be a function that maps the pseudometric space

(X,dX) to a pairwise embedding optimization problem of the form (|X|,m, {li j}). Note that this definition
does not include any specification of how the optimization problem is solved (gradient descent, reduction
to an eigenproblem, etc). For example, the Metric Multidimensional Scaling manifold learning problem
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maps the pseudometric space (X,dX) to (|X|,m, {li j}) where li j(δ) = (dX(xi, x j)−δ)2. Optimizing this objec-
tive involves finding a matrix A that minimizes

∑
i, j∈1...|X|(dX(xi, x j)−‖Ai −A j‖)2. That is, the Euclidean

distance matrix of the rows of the optimal A is as close as possible to the dX distance matrix.
If a manifold learning problem maps isometric pseudometric spaces to embedding optimization prob-

lems with the same solution set, we call it isometry-invariant. Intuitively, isometry-invariant manifold
learning algorithms do not change their output based the ordering of X. A particularly useful prop-
erty of isometry-invariant manifold learning problems is that they factor through hierarchical clustering
algorithms.

Proposition 1. Given any isometry-invariant manifold learning problem M, there exists a manifold
learning problem L ◦ H, where H is a hierarchical overlapping clustering algorithm (as defined by
Shiebler [20]) and L is a function that maps the output of H to an embedding optimization problem,
such that the solution spaces of the images of M and L◦H on any pseudometric space (X,dX) are iden-
tical. (Proof in Appendix A.1)

Intuitively, Proposition 1 holds because manifold learning problems generate loss functions by group-
ing points in the finite pseudometric space together. In order to use this property to adapt clustering
theorems into manifold learning theorems we will introduce a target category of pairwise embedding op-
timization problems and replace functions with functors from PMet into this category. To start, consider
the category L:
Definition 2.1. The objects in L are tuples (n, {li j}) where n is a natural number and li j : R≥0 → R is a
real-valued function that satisfies li′ j′(x) = 0 for i′ > n or j′ > n. L is a preorder where (n, {li j}) ≤ (n′, {l′

i j
})

iff for any x ∈ R≥0, i, j ∈ N we have li j(x) ≤ l′
i j
(x).

Given a choice of m, we can view the objects in L as pairwise embedding optimization problems.
However, L is not quite expressive enough to serve as our target category. Recall the Metric Multidimen-
sional Scaling manifold learning problem, which maps the pseudometric space (X,dX) to the pairwise
embedding optimization problem (|X|,m, {li j}) where li j(δ) = (dX(xi, x j) − δ)2. Since li j does not vary
monotonically with dX , it is clear that this manifold learning problem is not a functor from PMet to L.
However, note that we can express li j(A) as the sum of a term that increases monotonically in dX(xi, x j)
and a term that decreases monotonically in dX(xi, x j):

li j(δ) = (dX(xi, x j)−δ)2 =
(
δ2 + dX(xi, x j)2

)
−

(
2δdX(xi, x j)

)
We will see in Section 2.3 that the embedding optimization problems associated with many common
manifold learning algorithms decompose similarly. We can build on this insight to create a new category
Loss with the following pullback:

Loss L

Lop N

U

U

where U is the forgetful functor that maps (n, {li j}) to n. Intuitively Loss is a subcategory of Lop ×L
and we can write the objects in Loss as tuples (n, {ci j ,ei j}) where (n, {ci j ,ei j}) ≤ (n′, {c′

i j
,e′

i j
}) iff for any

x ∈ R≥0, i, j ∈ N we have c′
i j
(x) ≤ ci j(x) and ei j(x) ≤ e′

i j
(x). Given a choice of m, each object (n, {ci j ,ei j) in

Loss corresponds to the pairwise embedding optimization problem (n,m, {li j}) where li j(δ) = ci j(δ)+ei j(δ).
Similarly to the representation of hierarchical clustering algorithms as maps into a category FCov

of functors (0,1]op → Cov, we will represent manifold learning algorithms as mapping into a category
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FLoss of functors (0,1]op→ Loss. The objects in FLoss are functors F : (0,1]op→ Loss that commute
with the forgetful functor that maps (n, {ci j ,ei j}) to n, and the morphisms are natural transformations. We
call n the cardinality of F. We can define a functor Flatten : FLoss→ Loss that maps the functor F
where F(a) = (n, {cF(a)i j ,eF(a)i j}) to the tuple (n, {ci j ,ei j}) where:

ci j(x) =

∫
a∈(0,1]

cF(a)i j(x) da ei j(x) =

∫
a∈(0,1]

eF(a)i j(x) da

Therefore, each functor F ∈ FLoss with cardinality n corresponds to the pairwise embedding optimiza-
tion problem (n,m, {lFi j}) where lFi j(δ) =

∫
a∈(0,1] cF(a)i j(δ) + eF(a)i j(δ) da. We will call the sum of these

terms, lF(A), the F-loss:

lF(A) =
∑

i∈1...n
j∈1...n

lFi j(‖Ai−A j‖) =
∑

i∈1...n
j∈1...n

∫
a∈(0,1]

cF(a)i j(‖Ai−A j‖) + eF(a)i j(‖Ai−A j‖) da

We can now give our definition of a manifold learning functor:
Definition 2.2. Suppose PMet is the category of pseudometric spaces and non-expansive maps and
FCov is the category of fuzzy non-nested flag covers and natural transformations (see Section 1.4). Then
given the subcategories D ⊆ PMet,D′ ⊆ FCov, the composition L◦H : D→ FLoss forms a D-manifold
learning functor if H : D→D′ is a hierarchical D-clustering functor and L : D′→ Loss is a functor that
maps a fuzzy non-nested flag cover with vertex set X to some FX ∈ FLoss with cardinality |X|.

Intuitively a manifold learning functor D
H
−→ D′

L
−→ FLoss factors through a hierarchical clustering

functor and sends (X,dX) to F where F(a) = (|X|, {cF(a)i j ,eF(a)i j}). We will say that M = L◦H is in stan-
dard form if M maps the one-point metric space ({∗},0) to some F where cF(a)i j(x) = eF(a)i j(x) = 0 and
∀ε,δ ∈ R≥0,H(X,dX + ε)(− log(δ)) ' H(X,dX)(− log(δ+ ε)). Each manifold learning functor corresponds
to a manifold learning problem that maps (X,dX) to (|X|,m, lM(X,dX)).

2.1 A Spectrum of Manifold Learning Functors

Recall the single and maximal linkage hierarchical overlapping clustering algorithms SL andMLwhich
map the pseudometric space (X,dX) to the fuzzy non-nested flag cover (X,CXa) where CXa is respectively
the connected components of the − log(a)-Vietoris-Rips complex of (X,dX) and the maximally linked
sets of the relation Ra in which x1Rax2 if dX(x1, x2) ≤ − log(a) [20, 11]. If we apply functoriality to
Proposition 6 in Shiebler [20] we see:

Proposition 2. Suppose D is a subcategory of PMet such that PMetbi j ⊆ D, L ◦H is a D-manifold
learning functor such that H is non-trivial [20, 11] and for all a ∈ (0,1], the functor H(−)(a) : D→ Cov
has clustering parameter δH,a. Then for a ∈ (0,1] and (X,dX) ∈ D we have maps:

(L◦ML)(X,dX)(e−δH,a) ≤ (L◦H)(X,dX)(a) ≤ (L◦SL)(X,dX)(e−δH,a) (1)

that are natural in a and (X,dX). (Proof in Appendix A.2)

Intuitively, this proposition states that every manifold learning functor maps (X,dX) to a loss that is
both no more interconnected than the loss that does not distinguish points within the same connected
component of the Vietoris-Rips complex and no less interconnected than the loss that treats each pair of
points independently.

There are many manifold learning functors that lie between these extremes. In particular, for any
functor L : PMetin j → Loss and sequence of clustering functorsML,H1,H2, ...,Hn,SL whose outputs
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refine each other, we can apply functoriality to form a sequence of manifold learning functors L◦ML ≤
L◦H1 ≤ ... ≤ L◦Hn ≤ L◦SL. For example, consider the familyLk of hierarchical overlapping clustering
functors from Culbertson et al. [11]: for k ∈ N, the cover Lk(X,dX)(a) is the maximal linked sets of the
relation Ra where xRax′ if there is a sequence x = x1, x2..., xk−1, xk = x′ in X where d(xi, xi+1) ≤ − log(a).
The functor L◦Lk therefore maps (X,dX) to a loss that distinguishes only between points whose shortest
path in the Vietoris-Rips complex is longer than k. For k > 1 this loss is more interconnected than L◦ML
and less interconnected than L ◦SL. This also suggests a recipe for generating new manifold learning
algorithms (see Section 4): first express an existing manifold learning problem in the form L ◦H, and
then form L◦SL,L◦ML, or any of the functors along the spectrum L◦Lk.

2.2 Characterizing Manifold Learning Problems

Similarly to how Carlsson et al. [8] characterize clustering algorithms in terms of their functoriality over
different subcategories of pseudometric spaces, we can characterize manifold learning algorithms based
on the subcategory D ⊆ PMet over which they are functorial.

We have already introduced the class of isometry-invariant manifold learning problems. Any PMetisom-
manifold learning functor is isometry-invariant, and an isometry-invariant manifold learning problem is
expansive-contractive if the loss that it aims to minimize decomposes into the sum of an expansive
term e that decreases as distances increase and a contractive term c that increases as distances increase.
Intuitively, expansive-contractive manifold learning problems use the term e to push together points that
are close in the original space and use the term c to push apart points that are far in the original space.
Any PMetbi j-manifold learning functor is expansive-contractive.

An expansive-contractive manifold learning problem is positive extensible if c increases and e de-
creases when we increase |X|. If instead c decreases and e increases when we increase |X|, we say it is
negative extensible. Intuitively, many positive-extensible manifold learning problems are minmax prob-
lems that aim to simultaneously minimize |c| and maximize |e|. Any PMetsur-manifold learning functor
is positive extensible and any PMetin j-manifold learning functor is negative extensible.

Proposition 3. Suppose M is a standard form PMetsur-manifold learning functor and M′ is a standard
form PMetin j-manifold learning functor. Then for any (X,dX) and a ∈ (0,1] we have that eM(X,dX)(a)i j ,
cM′(X,dX)(a)i j are non-positive and cM(X,dX)(a)i j , eM′(X,dX)(a)i j are non-negative. (Proof in Appendix A.3)

In the next section we show examples of manifold learning algorithms in each of these categories.

2.3 Examples

2.3.1 Metric Multidimensional Scaling (PMetsur-Manifold Learning Functor)

The most straightforward strategy for learning embeddings is to minimize the difference between the
pairwise distance matrix of the original space and the pairwise Euclidean distance matrix of the learned
embeddings. The Metric Multidimensional Scaling algorithm [1] does exactly this. Given a finite
pseudometric space (X,dX), the Metric Multidimensional Scaling embedding optimization problem is
(|X|,m, l) where l(A) =

∑
i∈1...n
j∈1...n

(dX(xi, x j) − ‖Ai − A j‖)2. When the distance matrix of the pseudomet-

ric space is double-centered (mean values of rows/columns are zero) this is the same objective that
Principal Components Analysis (PCA) optimizes [2]. Now define MDS : FCovsur → FLoss to map
the fuzzy non-nested flag cover H : (0,1]op → Covin j with vertex set X to F : (0,1]op → Loss where



Dan Shiebler 7

F(a) = (|X|, {cF(a)i j ,eF(a)i j},0) and:

cF(a)i j(x) =

x2 ∃S ∈ H(a), xi, x j ∈ S })
x2 + 2x2

(
1/Wi j−1/a

)
else

eF(a)i j(x) =

0 ∃S ∈ H(a), xi, x j ∈ S })
2log(Wi j)

Wi j
−

2log(a)
a else

where:

Wi j = sup
≥0
{a | a ∈ (0,1], ∃S ∈ H(a), xi, x j ∈ S }

Proposition 4. MDS is a functor, and MDS ◦ML is a PMetsur-manifold learning functor that maps
the finite pseudometric space (X,dX) to the Metric Multidimensional Scaling embedding optimization
problem. (Proof in Appendix A.4)

2.3.2 IsoMap (PMetsur-Manifold Learning Functor)

For many real world datasets it is the case that the distances between nearby points are more reliable and
less noisy than the distances between far away points. The IsoMap algorithm [22] redefines the distances
between far apart points in terms of the distances between near points. Given a finite pseudometric space
(X,dX), the IsoMap embedding optimization problem is (|X|,m, l) where l(A) =

∑
i∈1...n
j∈1...n

(d′X(xi, x j)−‖Ai −

A j‖)2 such that d′X(xi, x j) is the length of the shortest path between xi and x j in the graph in which there
exists an edge of length dX(x, x′) between each pair of points (x, x′) ∈ X with dX(x, x′) ≤ δ.

Proposition 5. For any δ ∈ R≥0, there exists a hierarchical PMet-clustering functor IsoClusterδ such
that the PMetsur-manifold learning functor MDS◦ IsoClusterδ maps the finite pseudometric space (X,dX)
to the IsoMap embedding optimization problem. (Proof in Appendix A.5)

2.3.3 k-Path Scaling (PMetsur-Manifold Learning Functor)

Given a finite pseudometric space (X,dX) and k ∈ N, suppose d′X(xi, x j) is the smallest δ such that there
exists a path of ≤ k edges between xi and x j in the δ-Vietoris Rips complex of (X,dX). Then the PMetsur-
manifold learning functor MDS◦Lk maps (X,dX) to the k-Path Scaling embedding optimization problem
(|X|,m, l) where l(A) =

∑
i, j∈1...|X|(d′X(xi, x j)−‖Ai−A j‖)2.

2.3.4 k-Vertex-Connected Scaling (PMetbi j-Manifold Learning Functor)

For k ∈N the hierarchical overlapping clustering functorVLk maps the finite pseudometric space (X,dX)
to the fuzzy non-nested flag cover (X,CXa) where CXa is the set of maximal min(|X|,k)-vertex-connected
subgraphs of the − log(a)-Vietoris-Rips complex of (X,dX). Note that VL1 = SL and limk→∞VLk =

ML. Note also that for k > 1 the map VLk is functorial over PMetin j but not all of PMet since a
non-injective map may split a k-vertex-linked subgraph [11].

Now given a finite pseudometric space (X,dX) and k ∈ N, suppose d′X(xi, x j) is the smallest δ such
that there exists a min(|X|,k)-vertex-connected subgraph of the δ-Vietoris-Rips complex of (X,dX) that
contains both xi and x j. Then the PMetbi j-manifold learning functor MDS ◦VLk maps (X,dX) to the k-
Vertex Connected Scaling embedding optimization problem (|X|,m, l) where l(A) =

∑
i, j∈1...|X|(d′X(xi, x j)−

‖Ai−A j‖)2. Note that unlike MDS◦Lk, for k > 1 the map MDS◦VLk is not functorial over all of PMetsur

sinceVLk is not functorial over PMetsur.
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2.3.5 UMAP (PMetisom-Manifold Learning Functor)

The UMAP algorithm builds a local uber-metric space around each point in X, converts each local uber-
metric space to a fuzzy simplicial complex, and minimizes a loss function based on a fuzzy union of
these fuzzy simplicial complexes. Given a finite pseudometric space (X,dX), the UMAP embedding
optimization problem is (|X|,m, l) where l is the fuzzy cross-entropy:

l(A) =
∑

i, j∈1...|X|

Wi j log
(

Wi j

e−‖Ai−A j‖

)
+ (1−Wi j) log

(
1−Wi j

1− e−‖Ai−A j‖

)

and Wi j is the weight of the fuzzy union of the 1-simplices connecting xi and x j in the Vietoris-Rips
complexes formed from the |X| local uber-metric spaces (X,dxi) where:

dxi(x j, xk) =

dX(x j, xk)−minl=1...n dX(xi, xl) i = j, i = k
∞ else

Proposition 6. There exists a hierarchical PMetisom-clustering functor FuzzySimplex that decomposes
into the composition of four functors that:

1. build a local uber-metric space around each point in X;

2. convert each local uber-metric space to a fuzzy simplicial complex;

3. take a fuzzy union of these fuzzy simplicial complexes;

4. convert the resulting fuzzy simplicial complex to a fuzzy non-nested flag cover.

(Proof in Appendix A.6)

Proposition 7. There exists a functor FCE : FCovbi j→FLoss such that the composition FCE◦FuzzySimplex
is a PMetisom-manifold learning functor that maps the pseudometric space (X,dX) to the UMAP embed-
ding optimization problem. (Proof in Appendix A.7)

Since the UMAP distance rescaling procedure does not preserve non-expansive maps, even if a map
from (X,dX) to (X′,dX′) is non-expansive, this will not necessarily be the case for all of the local uber-
metric spaces (X,dxi) that we build from (X,dX) and (X′,dX′). For this reason FCE ◦FuzzySimplex is not
functorial over PMetbi j.

3 Stability of Manifold Learning Algorithms

We can use this functorial perspective on manifold learning to reason about the stability of manifold
learning algorithms under dataset noise. An ε-interleaving between the functors F,G : R≥0 → C is a
collection of commuting natural transformations between F(δ)→G(δ+ ε) and G(δ)→ F(δ+ ε) [9, 10].
The interleaving distance dI between such functors is the smallest ε such that an ε-interleaving exists.
In order to study interleavings between functors in FCov or FLoss whose domain is (0,1]op rather than
R≥0, we will say that the functors F,G are ε∗-interleaved when there is an ε-interleaving between the
functors F ◦ r and G ◦ r where r(x) = e−x. We will also write dI∗(F,G) = dI(F ◦ r,G ◦ r).
Proposition 8. Given a subcategory D of PMet, a standard form D-manifold learning functor M =

L ◦H and a pair of finite pseudometric spaces (X,dX), (Y,dY ) such that there exists a pair of morphisms
f : (X,dX)→ (Y,dY + ε),g : (Y,dY )→ (X,dX + ε) in D, we have dI∗(M(X,dX),M(Y,dY )) ≤ ε. (Proof in
Appendix A.8)
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Proposition 8 is similar in spirit to previous results that use the Gromov-Hausdorff distance between
metric spaces to bound the bottleneck or homotopy interleaving distances between their corresponding
Vietoris-Rips complexes [10, 7, 19, 5]. As a special case, if M is an PMetbi j-manifold learning functor
and there exists an ε-isometry between (X,dX), (Y,dY ) then dI∗(M(X,dX),M(Y,dY )) ≤ ε. We can use this
to prove the following:

Proposition 9. Suppose we have a standard form PMetsur-manifold learning functor M, a pair of ε-
isometric finite pseudometric spaces (X,dX), (Y,dY ) and the matrices AX ,AY that respectively minimize
lM(X,dX) and lM(Y,dY ). Then if |cM(X,dX)(a)i j(x)| ≤ Kc

2 , |cM(Y,dY )(a)i j(x)| ≤ Kc
2 and |eM(X,dX)(a)i j(x)| ≤ Ke

2 , |eM(Y,dY )(a)i j(x)| ≤
Ke
2 we have:

lM(X,dX) (AY ) ≤ lM(X,dX) (AX) + Kcn2(1− e−ε) + Ken2(eε −1) (2)

If eM(X,dX)(a)i j(x) is constant in x (such as for any M that factors as M = MDS◦H) we have:

lM(X,dX) (AY ) ≤ lM(X,dX) (AX) + Kcn2(1− e−ε) (3)

(Proof in Appendix A.9)
For a very simple example, consider Multidimensional Scaling without dimensionality reduction. In

this case M = MDS ◦ML and (X,dX), (Y,dY ) are each finite ordered n-element subspaces of Rm with
Euclidean distance. If we write the vectors in X and Y as matrices AX ,AY ∈Matn,m, then these matrices
respectively minimize lM(X,dX) and lM(Y,dY ), and lM(X,dX)(AX) = lM(Y,dY )(AY ) = 0. Since the function that
sends the ith element of X to the ith element of Y must be an inf{2ε | ∀i‖AXi −AYi‖ ≤ ε}-isometry, Propo-
sition 9 bounds the average of the squared distances between the paired rows of two matrices in terms of
largest such distance.

These bounds apply to a very general class of manifold learning algorithms, including topologically
unstable algorithms like IsoMap [4]. As an example, consider using IsoMap to project n evenly spaced
points that lie upon the surface of a radius r circle in R2 onto R1. In this case (X,dX) is a finite ordered n-
element subspace of R2 with Euclidean distance, M = MDS◦ IsoClusterδ and for any matrix AX ∈Matn,1
that consists of n evenly spaced points along the real line such that AXi+1 − AXi = 2r sin( 2π

2n ) we have
lM(X,dX)(AX) = 0. Now suppose that we instead apply IsoMap to a noisy view of (X,dX): a finite ordered
n-element subspace (Y,dY ) of R2 where dY is Euclidean distance and ∀i=1...ndX(Xi,Yi) = dY (Xi,Yi) = ‖Xi−

Yi‖ ≤ ε. Then for any matrix AY ∈ Matn,1 that minimizes lM(Y,dY ), Proposition 9 bounds the average
squared difference between |AYi+1 −AYi | and 2r sin( 2π

2n ).

4 Experiments in Functorial Recombination

One benefit of the functorial perspective on manifold learning is that it provides a natural way to produce
new manifold learning algorithms by recombining the components of existing algorithms. Suppose
we are able to express two existing manifold learning algorithms M1,M2 in this framework such that
M1 = L1 ◦H1 and M2 = L2 ◦H2 where H1,H2 are hierarchical clustering functors. Then we can use the
compositionality of functors to define the manifold learning algorithms L2 ◦H1 or L1 ◦H2. We can use
this procedure to combine the strengths of multiple algorithms in a way that preserves functoriality (and
therefore also stability by Proposition 9). For example, if we compose the FuzzySimplex functor from
Proposition 6 with MDS we form the PMetisom-manifold learning functor MDS◦FuzzySimplex that maps
(X,dX) to the embedding optimization problem (|X|,m, l) where l(A) =

∑
i, j∈1...|X|(− log(αi j)−‖Ai −A j‖)2

and αi j is the strength of the fuzzy simplex that UMAP forms between xi and x j.



10 Functorial Manifold Learning

For a more illustrative example, consider a DNA recombination task in which we attempt to match a
string of DNA that has been repeatedly mutated back to the original string. One way to solve this task is
to generate embeddings for each string of DNA and look at the nearest neighbors of the mutated string.
We can simulate this task as follows

1. Generate N original random sequences of DNA of length L (strings of “A”, “C”, “G”, “T”).

2. For each sequence, mutate the sequence M times to produce a mutation list, or a list of sequences
which each start with an original DNA sequence and end with a final DNA sequence.

3. Collect each of the M sequences in each of these N mutation lists into a N ∗M element finite
pseudometric space with Hamming distance.

4. Build embeddings from this pseudometric space and compute the percent of mutation lists for
which the nearest neighbor of the last DNA sequence in that list among the set of all original
sequences is the first sequence in that list (the accuracy).

A manifold learning algorithm that performs well on this task will need to take advantage of the in-
termediate mutation states to recognize that the first state and final state in a mutation list should be
embedded as close together as possible. We can follow the procedure in Section 2.1 to adapt the Metric
Multidimensional Scaling algorithm MDS ◦ML (Section 2.3.1) into such an algorithm by forming the
maximally interconnected functor MDS◦SL. Intuitively, this functor maps (X,dX) to a loss function that
corresponds to the optimization objective for Metric Multidimensional Scaling where Euclidean distance
is replaced with:

d∗X(x, x′) = inf{δ | ∃x = x1, x2, ..., xn = x′ ∈ X,dX(xi, xi+1) ≤ δ}

We call this the Single Linkage Scaling algorithm (Algorithm 1). Since this algorithm embeds points
that are connected by a sequence in the original space as close together as possible, we expect Single
Linkage Scaling to outperform Metric Multidimensional Scaling on this task. This is exactly what we
see in Table 1. We also show the embeddings for each sequence in each list in Figure 1.

Algorithm 1 Single Linkage Scaling
1: procedure SingleLinkageScaling(((X,dX),m))
2: Initialize the |X| × |X| matrix B to all zeros
3: ∀i, j ≤ |X|
4: Bi j = inf{δ | ∃xi = x1, x2, ..., xn = x j ∈ X,dX(xk, xk+1) ≤ δ}
5: A←minA∈Mat|X|,m

∑
i, j∈1...|X|(‖Ai−A j‖−Bi j)2

6: return A

5 Discussion and Future Work

We have taken the first steps towards a categorical framework for manifold learning. By defining an
algorithm as a functor from a category of metric spaces, we can explicitly express the kind of dataset
transformations under which it is equivariant. We show that for many popular manifold learning algo-
rithms, including Metric Multidimensional Scaling and IsoMap, the optimization objective changes in a
predictable way as we modify the metric space.

The functorial perspective also suggests a new strategy for exploratory data analysis with manifold
learning. Since we can decompose manifold learning algorithms into two components (clustering and
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Figure 1: Embeddings of DNA sequences from the DNA recombination task with L = 1000,N = 100,M =

10. Each color indicates a unique DNA sequence mutation list. Note that Single Linkage Scaling
(MDS ◦SL) on the right embeds sequences in the same mutation list more closely together than Metric
Multidimensional Scaling (MDS◦ML) on the left.

Algorithm Accuracy
N = 100
M = 10

Accuracy
N = 100
M = 20

Accuracy
N = 200
M = 10

Accuracy
N = 200
M = 20

Metric Multidimensional Scaling
Embedding Size 2

0.21 (± 0.05) 0.01 (± 0.02) 0.29 (± 0.02) 0.01 (± 0.00)

Single Linkage Scaling
Embedding Size 2

0.61 (± 0.02) 0.68 (± 0.05) 0.76 (± 0.01) 0.32 (± 0.02)

Metric Multidimensional Scaling
Embedding Size 5

0.74 (± 0.01) 0.13 (± 0.02) 0.84 (± 0.01) 0.04 (± 0.01)

Single Linkage Scaling
Embedding Size 5

0.93 (± 0.05) 0.91 (± 0.02) 0.96 (± 0.02) 0.34 (± 0.02)

Table 1: Accuracy on the DNA recombination task of the Metric Multidimensional Scaling (MDS◦ML)
and Single Linkage Scaling (MDS ◦SL) algorithms (higher numbers are better). The accuracy is the
percent of the N mutation lists of length M for which the nearest neighbor of the last sequence in the list
among the set of all original DNA sequences is the first sequence in that list. The reported numbers are
means (and standard deviations) across 10 simulations. All DNA sequences are of length L = 1000.
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loss) we can examine how slight variations of the clustering algorithm affect the learned embeddings. We
show in Section 2.1 that every manifold learning functor L◦H lies on a spectrum of interconnectedness
between L ◦ML and L ◦ SL, and we can form new algorithms by moving along this spectrum. For
example, we see in Section 4 that replacing the ML functor with SL in the Metric Multidimensional
Scaling algorithm substantially changes the learned embeddings and improves performance on a DNA
recombination task. There are also many algorithms that lie between these two options, including the
k-Path Scaling and k-Vertex-Connected Scaling algorithms that we introduce in Section 2.3.

Another major benefit of expressing algorithms as functors is that functors preserve categorical prop-
erties like interleaving distance. This allows us to easily reason about the stability properties of both
existing algorithms and new algorithms that we create by recombining functors. Other authors have used
this strategy to prove stability properties of the homology of geometric filtered complexes [10]. In Sec-
tion 3 we use this strategy to define bounds on how dataset noise affects optimization quality. In future
work we hope to use these techniques to derive more powerful theorems around the resilience of other
kinds of unsupervised or supervised algorithms to noise. For example, we may also be able to tighten our
bounds by switching our perspective from finite metric spaces to distributions [6] or even involving cate-
gorical probability [14] to replace interleaving distance with a probabilistic analog. Due to the simplicity
and flexibility of this strategy, other researchers have begun to develop more flexible characterizations of
interleaving distance that we can apply in even more situations [19].
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A Appendix: Proofs

A.1 Proof of Proposition 1

Proof. Recall the maximal linkage hierarchical overlapping clustering algorithm ML that maps the
pseudometric space (X,dX) to the fuzzy non-nested cover (X,CXa) where CXa is the maximally linked
sets of the relation R in which x1Rx2 if dX(x1, x2) ≤ −log(a) [20, 11]. Consider also the function Real
that maps the fuzzy non-nested cover (X,CXa) to the pseudometric space (X,d′X) in which:

d′X(x1, x2) = e−sup{a | ∃S∈CXa ,x1,x2∈S }

It is easy to see that Real ◦ML is an isometry on pseudometric spaces. Therefore, for any isometry-
invariant manifold learning problem M, the composition (M ◦Real) ◦ML will have the same solution
set as M. �

A.2 Proof of Proposition 2

Proof. By Proposition 6 in [20], there exist natural transformations from:

ML(X,dX)(WH(−))→ H(X,dX)(−)→SL(X,dX)(WH(−))

where WH(a) = e−δH,a . The statement then holds by functoriality. �

A.3 Proof of Proposition 3

Proof. First, since there trivially exists a surjective non-expansive map from (X,dX) to ({∗}), by functo-
riality we have that M(X,dX) ≤ M({∗}). This implies that for all i, j we have eM(X,dX)(a)i j ≤ eM({∗})(a)i j = 0
and 0 = cM({∗})(a)i j ≤ cM(X,dX)(a)i j .

http://math.mit.edu/~dspivak/files/metric_realization.pdf
http://math.mit.edu/~dspivak/files/metric_realization.pdf
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Next, since there trivially exists an injective non-expansive map from ({∗}) to (X,dX), by functoriality
we have that M′({∗}) ≤ M′(X,dX). This implies that for all i, j we have cM′(X,dX)(a)i j ≤ cM′({∗})(a)i j = 0 and
0 = eM′({∗})(a)i j ≤ eM′(X,dX)(a)i j . �

A.4 Proof of Proposition 4

Proof. MDS : FCovsur → FLoss maps the fuzzy non-nested cover H : (0,1]op→ Covin j with vertex set
X to F : (0,1]op→ Loss where F(a) = (|X|, {cF(a)i j ,eF(a)i j}) and:

cF(a)i j(x) =

x2 ∃S ∈ H(a), xi, x j ∈ S })
x2 + 2x2

(
1/Wi j−1/a

)
else

eF(a)i j(x) =

0 ∃S ∈ H(a), xi, x j ∈ S })
2log(Wi j)

Wi j
−

2log(a)
a else

where:

Wi j = sup
≥0
{a | a ∈ (0,1], ∃S ∈ H(a), xi, x j ∈ S }

We will show that MDS ◦ML is an PMetsur-manifold learning functor that maps any pseudometric
space (X,dX) to the Metric Multidimensional Scaling embedding optimization problem over the distance
matrix of dX .

First, we need to show that MDS : FCovsur → FLoss is a functor. Consider the fuzzy non-nested
covers HX and HX′ in FCovsur with vertex sets X,X′ respectively such that there exists a morphism f
in FCovsur between them (a natural transformation with surjective components). Say MDS(HX)(a) =

(|X|, {cF(a)i j ,eF(a)i j}) and MDS(HX′)(a) = (|X′|, {c′F(a)i j
,e′F(a)i j

}). Since each component of f is surjective it
must be that |X|′ ≤ |X|. There are now two cases:

• Say i, j≤ |X′|. For each a ∈ (0,1], x1, x2 ∈ X,∃S ∈HX(a), x1, x2 ∈ S , by definition ∃S ∈HX′(a), f (x1), f (x2) ∈
S . Therefore ∀x∈R≥0eF(a)i j(x) ≤ e′F(a)i j

(x),c′F(a)i j
(x) ≤ cF(a)i j(x).

• Say i > |X′| or j > |X′|. By definition c′F(a)i j
(x) = e′F(a)i j

(x) = 0. Since cF(a)i j is non-negative and
eF(a)i j is non-positive, we have ∀x∈R≥0eF(a)i j(x) ≤ e′F(a)i j

(x),c′F(a)i j
(x) ≤ cF(a)i j(x).

Therefore MDS(HX) ≤MDS(HX′). Since MDS : FCovsur→ FLoss trivially preserves the identity we can
conclude that it is a functor and MDS◦ML is a PMetsur-manifold learning functor.

Next, we show that MDS ◦ML maps (X,dX) to the Metric Multidimensional Scaling embedding
optimization problem. Define F = (MDS◦ML)(X,dX) and note that:

Wi j = sup
≥0
{a | a ∈ (0,1], ∃S ∈ML(X,dX)(a), xi, x j ∈ S } = e−dX(xi,x j)
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The F-loss is as follows:

lF(A) =
∑

i∈1...n
j∈1...n

∫
a∈(0,1]

eF(a)i j(‖Ai−A j‖) + cF(a)i j(‖Ai−A j‖) da =

∑
i∈1...n
j∈1...n

‖Ai−A j‖
2 +

∫
a∈(Wi j,1]

2log(Wi j)
Wi j

−
2log(a)

a
da

+

2‖Ai−A j‖
2
∫

a∈(Wi j,1]

1
Wi j
−

1
a

da
 =

C +
∑

i∈1...n
j∈1...n

‖Ai−A j‖
2 + log(Wi j)2 + 2‖Ai−A j‖

2log(Wi j) =

C +
∑

i∈1...n
j∈1...n

‖Ai−A j‖
2 + dX(xi, x j)2−2‖Ai−A j‖

2dX(xi, x j) =

C +
∑

i∈1...n
j∈1...n

(
‖Ai−A j‖−dX(xi, x j)

)2

where n = |X| and C is a constant factor.
�

A.5 Proof of Proposition 5

Proof. First, define the δ-graph of (X,dX) to be the graph in which the vertices are the points in X and
there exists an edge of length dX(x, x′) between each pair of points (x, x′) ∈ X with dX(x, x′) ≤ δ. Now
define IsoClusterδ : PMet→ FCov such that IsoClusterδ(X,dX)(a) is the collection of maximally linked
sets of the relation Ra, where for x, x′ ∈ X we have xRax′ if there exists a path of length no larger
than −log(a) in the δ-graph of (X,dX). We will show that IsoClusterδ is a hierarchical PMet-clustering
functor.

Consider the non-expansive map f : (X,dX)→ (Y,dY ) and say that for some a ∈ (0,1], x, x′ ∈ X,∃S ∈
IsoClusterδ(X,dX)(a), x, x′ ∈ S . Then there exists x = x1, x2, ..., xn−1, xn = x′ such that:

maxi=1...ndX(xi, xi+1) ≤ δ
∑

i=1...n

dX(xi, xi+1) ≤ −log(a)

which implies that:

maxi=1...ndY ( f (xi), f (xi+1)) ≤ δ
∑

i=1...n

dY ( f (xi), f (xi+1)) ≤ −log(a)

which implies that ∃S ′ ∈ IsoCluster(Y,dY )(a), f (x), f (x′) ∈ S ′. Since IsoClusterδ trivially preserves the
identity and acts as the identity on the underlying set, we can conclude that IsoClusterδ is a hierarchical
PMet-clustering functor.

Next, we will show that the manifold learning functor MDS◦ IsoClusterδ maps (X,dX) to the IsoMap
embedding optimization problem. First define:

Wi j = sup
≥0
{a | a ∈ (0,1], ∃S ∈ IsoClusterδ(X,dX)(a), xi, x j ∈ S } = e−d′X(xi,x j)
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where d′X(xi, x j) is the smallest γ such that there exists a path of length no greater than γ between xi and
x j in the δ-graph of (X,dX). Now if we define F = (MDS ◦ IsoClusterδ)(X,dX) then following the same
steps as in Section A.4 we have:

lF(A) = C +
∑

i∈1...n
j∈1...n

(
‖Ai−A j‖−d′X(xi, x j)

)2

where n = |X| and C is a constant factor. �

A.6 Proof of Proposition 6

Before we begin, we will show the following:

Proposition 10. The category of fuzzy simplicial complexes and bijective simplicial maps FSCpxbi j [20]
is finitely co-complete.

Proof. For some finite category C consider a functor of the form F : C→ FSCpxbi j. Define the fuzzy
simplicial complex Fc : (0,1]op→ SCpxbi j in FSCpxbi j to map a ∈ (0,1] to the simplicial complex whose
set of n-simplices is ∪o∈ob(C)F(o)[n]. Note that ob(C) is the set of objects in C. It is clear that this is
the minimal fuzzy simplicial complex such that there exists a natural transformation from each fuzzy
simplicial complex F(o),o ∈ ob(C) into this fuzzy simplicial complex, so Fc is the colimit of F and
FSCpxbi j is finitely co-complete. �

Now we will prove Proposition 6.

Proof. Note that for any N,N′ ∈ N such that N , N′, the size N pseudometric spaces and the size N′

pseudometric spaces have no morphisms between them in PMetisom. Therefore, we can uniquely define
FuzzySimplex by defining a separate functor FuzzySimplexN : PMetisom(N)→ FCovbi j for each N ∈ N,
where PMetisom(N) is the subcategory of PMetisom where objects are restricted to pseudometric spaces
(X,dX) with cardinality N.

To start, denote the N-element discrete category N and define the following functor for step 1 (build
a local uber-metric space around each point): LocalMetricN : PMetisom(N)→ UMetN

bi j sends the N-
element pseudometric space (X,dX) to the functor F : N→ UMetbi j that maps i ∈ N to (X,dxi) where:

dxi(x j, xk) =

dX(x j, xk)−minl=1...n dX(xi, xl) i = j, i = k
∞ else

LocalMetricN sends the function f to the natural transformation in which each component is f . Since f
is an isometry this map must exist and be natural.

Since LocalMetricN trivially preserves composition and the identity it is a functor. For step 2 (convert
each local uber-metric space to a fuzzy simplicial complex), we will use the functor [20]:

(FinS ing◦−)N : UMetN
bi j→ FSCpxN

bi j

which maps the functor F : N→ UMetbi j to the functor (FinS ing◦F) : N→ FSCpxbi j.
For step 3 (take a fuzzy union of these fuzzy simplicial complexes), we apply the colimit functor

colimN : FSCpxN
bi j→ FSCpxbi j which sends an indexed set of fuzzy simplicial complexes in FSCpxN

bi j
to its logical fuzzy union. This functor exists by Proposition 10. In a logical fuzzy union the strength
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of a simplex is defined to be its maximum strength among the complexes we are adjoining* . For step
4 (convert the resulting fuzzy simplicial complex to a fuzzy non-nested flag cover), we use the functor
(Flag◦−) from [20]. Since Flag maps bijective simplicial maps to bijections, the image of this functor
over FSCpxbi j is FCovbi j. Now we can compose steps 1-4 and apply a coproduct over N ∈ N to extend
this to the following functor from PMetisom to FCovbi j:

FuzzySimplex = ΠN∈N (Flag◦−)◦ colimN ◦ (FinS ing◦−)N ◦LocalMetricN

We now show FuzzySimplex is a hierarchical PMetisom-clustering functor. Since FuzzySimplex is by
definition a functor, we simply need to show for any (X,dX) that FuzzySimplex(X,dX) is a fuzzy non-
nested flag cover of X. First note that for any object o ∈N, the vertex set of the following fuzzy simplicial
complex is X:

((FinS ing◦−)N ◦LocalMetricN)(X,dX)(o)

Therefore the vertex set of the following fuzzy simplicial complex is X as well:

(colimN ◦ (FinS ing◦−)N ◦LocalMetricN)(X,dX)

This implies that FuzzySimplex(X,dX) is a fuzzy cover of X.
�

A.7 Proof of Proposition 7

Proof. Define FCE : FCovbi j → FLoss to map the fuzzy non-nested cover H : (0,1]op → Covbi j with
vertex set X to F : (0,1]op→ Loss where F(a) = (|X|, {cF(a)i j ,eF(a)i j}) and:

eF(a)i j(x) =

−log(e−x) ∃S ∈ H(a), xi, x j ∈ S })
0 else

cF(a)i j(x) =

0 ∃S ∈ H(a), xi, x j ∈ S })
−log(1− e−x) else

We will show that FCE ◦FuzzySimplex is an PMetisom-manifold learning functor that maps any pseudo-
metric space (X,dX) to the UMAP embedding optimization problem over the distance matrix of dX .

First, we need to show that FCE : FCovbi j → FLoss is a functor. Consider the fuzzy non-nested
covers HX and HX′ in FCovbi j with vertex sets X,X′ respectively such that there exists a morphism
f in FCovbi j between them (a natural transformation with bijective components). Say FCE(HX)(a) =

(|X|, {cF(a)i j ,eF(a)i j}) and FCE(HX′)(a) = (|X′|, {c′F(a)i j
,e′F(a)i j

}). Since each component of f is bijective
it must be that |X|′ = |X|. Now for each a ∈ (0,1], x1, x2 ∈ X,∃S ∈ HX(a), x1, x2 ∈ S , by definition
∃S ∈ HX′(a), f (x1), f (x2) ∈ S . Therefore ∀x∈R≥0eF(a)i j(x) ≤ e′F(a)i j

(x),c′F(a)i j
(x) ≤ cF(a)i j(x). Therefore

FCE(HX) ≤ FCE(HX′). Since FCE : FCovbi j → FLoss trivially preserves the identity we can conclude
that it is a functor and FCE ◦FuzzySimplex is a PMetisom-manifold learning functor.

*This is different from the probabilistic simplicial complex union that the UMAP python code uses [18].
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Next, we will show that FCE ◦FuzzySimplex maps (X,dX) to the UMAP embedding optimization
problem. Define F = (FCE ◦FuzzySimplex)(X,dX). We have that the F-loss is:

lF(A) =
∑

i∈1...n
j∈1...n

∫
a∈(0,1]

cF(a)i j(‖Ai−A j‖) + eF(a)i j(‖Ai−A j‖)da =

∑
i∈1...n
j∈1...n

∫
a∈(Wi j,1]

−log(1− e−‖Ai−A j‖) da−
∫

a∈(0,Wi j]
log(e−‖Ai−A j‖) da =

∑
i∈1...n
j∈1...n

−(1−Wi j)log(1− e−‖Ai−A j‖)−Wi jlog(e−‖Ai−A j‖) =

C +
∑

i∈1...n
j∈1...n

(1−Wi j)log
(

1−Wi j

1− e−‖Ai−A j‖

)
+ Wi jlog

(
Wi j

e−‖Ai−A j‖

)

where Wi j = sup≥0{a | a ∈ (0,1], ∃S ∈ FuzzySimplex(X,dX)(a), xi, x j ∈ S } is the weight of the fuzzy 1-
simplex connecting xi and x j, n = |X| and C =

∑
i∈1...n
j∈1...n

(1−Wi j)log(1−Wi j)+Wi jlog(Wi j) is a constant. �

A.8 Proof of Proposition 8

Proof. Say we have a pair of finite metric spaces (X,dX), (Y,dY ) such that there exists a pair of morphisms
f : (X,dX)→ (Y,dY + ε),g : (Y,dY )→ (X,dX + ε) in D. By definition we have that H(X,dX + ε)(−log(δ)) =

H(X,dX)(−log(δ+ ε)), so by functoriality for any δ ∈ R≥0 we have that f is refinement-preserving from
H(X,dX)(−log(δ)) to H(Y,dY )(−log(δ + ε)) and g is refinement-preserving from H(Y,dY )(−log(δ)) to
H(X,dX)(−log(δ+ ε)). Therefore since M = L◦H by functoriality we also have that:

M(X,dX)(−log(δ)) ≤ M(Y,dY )(−log(δ+ ε))

M(Y,dY )(−log(δ)) ≤ M(X,dX)(−log(δ+ ε))

Since Loss is a preorder, this implies that M(X,dX) and M(Y,dY ) are ε-interleaved. �

A.9 Proof of Proposition 9

Proof. By using Proposition 8, we see that in order to prove Proposition 9 we simply need to show that
if F,G are ε∗-interleaved functors in FLoss such that AF ∈ Matn,m minimizes lF , AG ∈ Matn,m mini-
mizes lG, cF(a)i j ,cG(a)i j are non-negative, eF(a)i j ,eG(a)i j are non-positive, |cF(a)i j(x)| ≤ Kc

2 , |cG(a)i j(x)| ≤ Kc
2

and |eF(a)i j(x)| ≤ Ke
2 , |eG(a)i j(x)| ≤ Ke

2 then we have:

lF(AG) ≤ lF(AF) + Kcn2(1− e−ε) + Ken2(eε −1)

And that in the special case where cF(a)i j(x) is constant in x we have:

lF(AG) ≤ lF(AF) + Kcn2(1− e−ε)

Now for simplicity we will write:

eF(a)(A) =
∑

i∈1...n
j∈1...n

eF(a)i j(‖Ai−A j‖) cF(a)(A) =
∑

i∈1...n
j∈1...n

cF(a)i j(‖Ai−A j‖)
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By the definition of ε-interleaving we have the following for any A ∈Matn,m.

cF(d∗e−ε )(x) ≤ cG(d)(x) eG(d)(x) ≤ eF(d∗e−ε )(x)

Now we can conclude that:

lF(AG) =

∫
a∈(0,1]

cF(a)(AG) da +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗

e−ε
∫

a∈(0,1]
cG(a)(AG) da +

Kc

2
n2(1− e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∫
a∈(0,1]

cG(a)(AG) da +
Kc

2
n2(1− e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗∗∫
a∈(0,1]

cG(a)(AG) da + eε
∫

a∈(0,1]
eG(a)(AG) da +

Kc

2
n2(1− e−ε) + (eε −1)

Ke

2
n2 ≤(∫

a∈(0,1]
cG(a)(AG) + eG(a)(AG) da

)
+

Kc

2
n2(1− e−ε) + (eε −1)

Ke

2
n2 ≤∗(∫

a∈(0,1]
eG(a)(AF) + cG(a)(AF) da

)
+

Kc

2
n2(1− e−ε) + (eε −1)

Ke

2
n2 ≤∗∗∫

a∈(0,1]
eG(a)(AF) + e−εcF(a)(AF) da + Kcn2(1− e−ε) + (eε −1)

Ke

2
n2 ≤∫

a∈(0,1]
eεeF(a)(A) + e−εcF(a)(AF) da + Kcn2(1− e−ε) + (eε −1)Ken2 ≤

lF(AF) + Kcn2(1− e−ε) + (eε −1)Ken2

In the special case where eF(a)i j is constant we have:

lF(AG) =

∫
a∈(0,1]

cF(a)(AG) da +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗

e−ε
∫

a∈(0,1]
cG(a)(AG) da +

Kc

2
n2(1− e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∗

e−ε
∫

a∈(0,1]
cG(a)(AF) da +

Kc

2
n2(1− e−ε) +

∫
a∈(0,1]

eF(a)(AF) da ≤∗∗

e−2ε
∫

a∈(0,1]
cF(a)(AF) da + Kcn2(1− e−ε) +

∫
a∈(0,1]

eF(a)(AF) da ≤

lF(AF) + Kcn2(1− e−ε)
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The steps marked with ∗ hold by the optimality of AG. The steps marked with ∗∗ are by the following,
which holds because c is non-negative and increasing in a: ∫

a∈(0,1]
cF(a)(A) da ≤∫

a∈(0,1]
cF(a)(A) da−

∫
a∈(e−ε ,1]

cF(a)(A) da +
Kc

2
n2(1− e−ε) =∫

a∈(0,e−ε ]
cF(a)(A) da +

Kc

2
n2(1− e−ε) =

e−ε
∫

a∈(0,1]
cF(a∗e−ε )(A) da +

Kc

2
n2(1− e−ε) ≤

e−ε
∫

a∈(0,1]
cG(a)(A) da +

Kc

2
n2(1− e−ε)

The steps marked with ∗ ∗ ∗ are by the following, which holds because e is non-positive and decreasing
in a: ∫

a∈(0,1]
eF(a)(A) da ≤∫

a∈(0,1]
eG(a∗e−ε )(A) da =

1
e−ε

∫
a∈(0,e−ε ]

eG(a)(A) da =

1
e−ε

(∫
a∈(0,1]

eG(a)(A) da +

∫
a∈(e−ε ,1]

eG(a)(A) da
)
≤

1
e−ε

(∫
a∈(0,1]

eG(a)(A) da− (1− e−ε)Ken2 da
)

=

eε
∫

a∈(0,1]
eG(a)(A) da− (eε −1)Ken2

�
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